Single Image Super Resolution via Multi-attention Fusion Recurrent Network

Deep convolutional neural networks have significantly enhanced the performance of single image super-resolution in recent years. However, the majority of the proposed networks are single-channel, making it challenging to fully exploit the advantages of neural networks in feature extraction. This pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Kou, Qiqi, Cheng, Deqiang, Zhang, Haoxiang, Liu, Jingjing, Guo, Xin, Jiang, He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Kou, Qiqi
Cheng, Deqiang
Zhang, Haoxiang
Liu, Jingjing
Guo, Xin
Jiang, He
description Deep convolutional neural networks have significantly enhanced the performance of single image super-resolution in recent years. However, the majority of the proposed networks are single-channel, making it challenging to fully exploit the advantages of neural networks in feature extraction. This paper proposes a Multi-attention Fusion Recurrent Network (MFRN), which is a multiplexing architecture-based network. Firstly, the algorithm reuses the feature extraction part to construct the recurrent network. This technology reduces the number of network parameters, accelerates training, and captures rich features simultaneously. Secondly, a multiplexing-based structure is employed to obtain deep information features, which alleviates the issue of feature loss during transmission. Thirdly, an attention fusion mechanism is incorporated into the neural network to fuse channel attention and pixel attention information. This fusion mechanism effectively enhances the expressive power of each layer of the neural network. Compared with other algorithms, our MFRN not only exhibits superior visual performance but also achieves favorable results in objective evaluations. It generates images with sharper structure and texture details and achieves higher scores in quantitative tests such as image quality assessment.
doi_str_mv 10.1109/ACCESS.2023.3314196
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10247056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247056</ieee_id><doaj_id>oai_doaj_org_article_499859847b9040c8af7195ef3fd148eb</doaj_id><sourcerecordid>2865090167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-8e22adc384d86cdb88fa984fc841c6d939bbddb77c4203111a553619b5726783</originalsourceid><addsrcrecordid>eNpNUU1PwkAUbIwmEuQX6KGJ5-J-dT-OpAHFoCbAfbPdvpJiYXHbavz3LpQY3mVeJjPzXjJRdI_RGGOkniZZNl2txgQROqYUM6z4VTQgmKuEppRfX-y30ahptiiMDFQqBtHrqtpvaojnO7OBeNUdwMdLaFzdtZXbx9-Vid-6uq0S07awP3GzrjnCEmznfeDid2h_nP-8i25KUzcwOuMwWs-m6-wlWXw8z7PJIrEMqTaRQIgpLJWskNwWuZSlUZKVVjJseaGoyvOiyIWwjCCKMTZp-ByrPBWEC0mH0byPLZzZ6oOvdsb_amcqfSKc32jj28rWoJlSMg3ZIleIIStNKbBKoaRlgZmEPGQ99lkH7746aFq9dZ3fh-81kTxFCmEugor2Kutd03go_69ipI8V6L4CfaxAnysIrofeVQHAhYMwgVJO_wDKGoFK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090167</pqid></control><display><type>article</type><title>Single Image Super Resolution via Multi-attention Fusion Recurrent Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kou, Qiqi ; Cheng, Deqiang ; Zhang, Haoxiang ; Liu, Jingjing ; Guo, Xin ; Jiang, He</creator><creatorcontrib>Kou, Qiqi ; Cheng, Deqiang ; Zhang, Haoxiang ; Liu, Jingjing ; Guo, Xin ; Jiang, He</creatorcontrib><description>Deep convolutional neural networks have significantly enhanced the performance of single image super-resolution in recent years. However, the majority of the proposed networks are single-channel, making it challenging to fully exploit the advantages of neural networks in feature extraction. This paper proposes a Multi-attention Fusion Recurrent Network (MFRN), which is a multiplexing architecture-based network. Firstly, the algorithm reuses the feature extraction part to construct the recurrent network. This technology reduces the number of network parameters, accelerates training, and captures rich features simultaneously. Secondly, a multiplexing-based structure is employed to obtain deep information features, which alleviates the issue of feature loss during transmission. Thirdly, an attention fusion mechanism is incorporated into the neural network to fuse channel attention and pixel attention information. This fusion mechanism effectively enhances the expressive power of each layer of the neural network. Compared with other algorithms, our MFRN not only exhibits superior visual performance but also achieves favorable results in objective evaluations. It generates images with sharper structure and texture details and achieves higher scores in quantitative tests such as image quality assessment.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3314196</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Attention fusion mechanism ; Computer architecture ; Convolutional neural networks ; Feature extraction ; Image enhancement ; Image quality ; Image reconstruction ; Image resolution ; Multiplexing ; Multiplexing-based ; Neural networks ; Quality assessment ; Recurrent network ; Recurrent neural networks ; Super resolution ; Superresolution ; Training</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-8e22adc384d86cdb88fa984fc841c6d939bbddb77c4203111a553619b5726783</citedby><cites>FETCH-LOGICAL-c409t-8e22adc384d86cdb88fa984fc841c6d939bbddb77c4203111a553619b5726783</cites><orcidid>0000-0001-8831-1994 ; 0000-0003-2873-2636 ; 0000-0002-3345-9665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247056$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,27638,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Kou, Qiqi</creatorcontrib><creatorcontrib>Cheng, Deqiang</creatorcontrib><creatorcontrib>Zhang, Haoxiang</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Jiang, He</creatorcontrib><title>Single Image Super Resolution via Multi-attention Fusion Recurrent Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep convolutional neural networks have significantly enhanced the performance of single image super-resolution in recent years. However, the majority of the proposed networks are single-channel, making it challenging to fully exploit the advantages of neural networks in feature extraction. This paper proposes a Multi-attention Fusion Recurrent Network (MFRN), which is a multiplexing architecture-based network. Firstly, the algorithm reuses the feature extraction part to construct the recurrent network. This technology reduces the number of network parameters, accelerates training, and captures rich features simultaneously. Secondly, a multiplexing-based structure is employed to obtain deep information features, which alleviates the issue of feature loss during transmission. Thirdly, an attention fusion mechanism is incorporated into the neural network to fuse channel attention and pixel attention information. This fusion mechanism effectively enhances the expressive power of each layer of the neural network. Compared with other algorithms, our MFRN not only exhibits superior visual performance but also achieves favorable results in objective evaluations. It generates images with sharper structure and texture details and achieves higher scores in quantitative tests such as image quality assessment.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Attention fusion mechanism</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Multiplexing</subject><subject>Multiplexing-based</subject><subject>Neural networks</subject><subject>Quality assessment</subject><subject>Recurrent network</subject><subject>Recurrent neural networks</subject><subject>Super resolution</subject><subject>Superresolution</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAUbIwmEuQX6KGJ5-J-dT-OpAHFoCbAfbPdvpJiYXHbavz3LpQY3mVeJjPzXjJRdI_RGGOkniZZNl2txgQROqYUM6z4VTQgmKuEppRfX-y30ahptiiMDFQqBtHrqtpvaojnO7OBeNUdwMdLaFzdtZXbx9-Vid-6uq0S07awP3GzrjnCEmznfeDid2h_nP-8i25KUzcwOuMwWs-m6-wlWXw8z7PJIrEMqTaRQIgpLJWskNwWuZSlUZKVVjJseaGoyvOiyIWwjCCKMTZp-ByrPBWEC0mH0byPLZzZ6oOvdsb_amcqfSKc32jj28rWoJlSMg3ZIleIIStNKbBKoaRlgZmEPGQ99lkH7746aFq9dZ3fh-81kTxFCmEugor2Kutd03go_69ipI8V6L4CfaxAnysIrofeVQHAhYMwgVJO_wDKGoFK</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kou, Qiqi</creator><creator>Cheng, Deqiang</creator><creator>Zhang, Haoxiang</creator><creator>Liu, Jingjing</creator><creator>Guo, Xin</creator><creator>Jiang, He</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8831-1994</orcidid><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid><orcidid>https://orcid.org/0000-0002-3345-9665</orcidid></search><sort><creationdate>20230101</creationdate><title>Single Image Super Resolution via Multi-attention Fusion Recurrent Network</title><author>Kou, Qiqi ; Cheng, Deqiang ; Zhang, Haoxiang ; Liu, Jingjing ; Guo, Xin ; Jiang, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-8e22adc384d86cdb88fa984fc841c6d939bbddb77c4203111a553619b5726783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Attention fusion mechanism</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Multiplexing</topic><topic>Multiplexing-based</topic><topic>Neural networks</topic><topic>Quality assessment</topic><topic>Recurrent network</topic><topic>Recurrent neural networks</topic><topic>Super resolution</topic><topic>Superresolution</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Qiqi</creatorcontrib><creatorcontrib>Cheng, Deqiang</creatorcontrib><creatorcontrib>Zhang, Haoxiang</creatorcontrib><creatorcontrib>Liu, Jingjing</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Jiang, He</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Qiqi</au><au>Cheng, Deqiang</au><au>Zhang, Haoxiang</au><au>Liu, Jingjing</au><au>Guo, Xin</au><au>Jiang, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Image Super Resolution via Multi-attention Fusion Recurrent Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep convolutional neural networks have significantly enhanced the performance of single image super-resolution in recent years. However, the majority of the proposed networks are single-channel, making it challenging to fully exploit the advantages of neural networks in feature extraction. This paper proposes a Multi-attention Fusion Recurrent Network (MFRN), which is a multiplexing architecture-based network. Firstly, the algorithm reuses the feature extraction part to construct the recurrent network. This technology reduces the number of network parameters, accelerates training, and captures rich features simultaneously. Secondly, a multiplexing-based structure is employed to obtain deep information features, which alleviates the issue of feature loss during transmission. Thirdly, an attention fusion mechanism is incorporated into the neural network to fuse channel attention and pixel attention information. This fusion mechanism effectively enhances the expressive power of each layer of the neural network. Compared with other algorithms, our MFRN not only exhibits superior visual performance but also achieves favorable results in objective evaluations. It generates images with sharper structure and texture details and achieves higher scores in quantitative tests such as image quality assessment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3314196</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8831-1994</orcidid><orcidid>https://orcid.org/0000-0003-2873-2636</orcidid><orcidid>https://orcid.org/0000-0002-3345-9665</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10247056
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural networks
Attention fusion mechanism
Computer architecture
Convolutional neural networks
Feature extraction
Image enhancement
Image quality
Image reconstruction
Image resolution
Multiplexing
Multiplexing-based
Neural networks
Quality assessment
Recurrent network
Recurrent neural networks
Super resolution
Superresolution
Training
title Single Image Super Resolution via Multi-attention Fusion Recurrent Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Image%20Super%20Resolution%20via%20Multi-attention%20Fusion%20Recurrent%20Network&rft.jtitle=IEEE%20access&rft.au=Kou,%20Qiqi&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3314196&rft_dat=%3Cproquest_ieee_%3E2865090167%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090167&rft_id=info:pmid/&rft_ieee_id=10247056&rft_doaj_id=oai_doaj_org_article_499859847b9040c8af7195ef3fd148eb&rfr_iscdi=true