Hiformer: Sequence Modeling Networks With Hierarchical Attention Mechanisms

The attention-based encoder-decoder structure, such as the Transformer, has achieved state-of-the-art performance on various sequence modeling tasks, e.g., machine translation (MT) and automatic speech recognition (ASR), benefited from the superior capability of layer-wise self-attention mechanism i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2023, Vol.31, p.3993-4003
Hauptverfasser: Wu, Xixin, Lu, Hui, Li, Kun, Wu, Zhiyong, Liu, Xunying, Meng, Helen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4003
container_issue
container_start_page 3993
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 31
creator Wu, Xixin
Lu, Hui
Li, Kun
Wu, Zhiyong
Liu, Xunying
Meng, Helen
description The attention-based encoder-decoder structure, such as the Transformer, has achieved state-of-the-art performance on various sequence modeling tasks, e.g., machine translation (MT) and automatic speech recognition (ASR), benefited from the superior capability of layer-wise self-attention mechanism in the encoder/decoder to access long-distance contextual information. Recently, analysis on the Transformer layers has shown that different levels of information, e.g., phoneme level, word level and semantic level, are represented at different layers. Effectively integrating information from various levels is important for structured prediction. However, the self-attention in the conventional Transformer structure only focuses on intra-layer integration, and does not explicitly model inter-layer information relationships. Also, attention across the encoder and decoder (cross-coder) only focuses on the top encoder layer but ignores the intermediate layers. In this article, we propose a sequence modeling structure equipped with a hierarchical attention mechanism, named Hiformer, that can consider the inter-layer and cross-coder hierarchical information to improve structured prediction performance. Extensive experiments conducted on both MT and ASR tasks demonstrate the effectiveness of the proposed Hiformer model.
doi_str_mv 10.1109/TASLP.2023.3313428
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10244068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10244068</ieee_id><sourcerecordid>2881500927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-82ce2da95daaf238b740c4ed6a9e2d9aaf95d499592761d55d74b4a7e172bc0c3</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT9AsbDJp4Xp3-Wbr0RomIENQHjsSndWSnCLrYlxm9vEUw8zeTNezOTHyEXFHqUgrqeDabjlx4DxnucUy5YeUQ6jDOVKw7i-K9nCk7JeQhLAKAglZKiQx5Hrm79Gv1NNsXPLTYWs0lb4co179kTxq_Wf4TszcVFNnLojbcLZ80qG8SITXRtk03QLkzjwjqckZParAKeH2qXvN7dzoajfPx8_zAcjHPLhIx5ySyyyqiiMqZmvJxLAVZg1Tcq6SqJaSSUKhSTfVoVRSXFXBiJVLK5Bcu75Gq_d-Pb9HKIetlufZNOalaWtABIyeRie5f1bQgea73xbm38t6agd9z0Lze946YP3FLoch9yiPgvwISAfsl_AHEEacg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881500927</pqid></control><display><type>article</type><title>Hiformer: Sequence Modeling Networks With Hierarchical Attention Mechanisms</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Xixin ; Lu, Hui ; Li, Kun ; Wu, Zhiyong ; Liu, Xunying ; Meng, Helen</creator><creatorcontrib>Wu, Xixin ; Lu, Hui ; Li, Kun ; Wu, Zhiyong ; Liu, Xunying ; Meng, Helen</creatorcontrib><description>The attention-based encoder-decoder structure, such as the Transformer, has achieved state-of-the-art performance on various sequence modeling tasks, e.g., machine translation (MT) and automatic speech recognition (ASR), benefited from the superior capability of layer-wise self-attention mechanism in the encoder/decoder to access long-distance contextual information. Recently, analysis on the Transformer layers has shown that different levels of information, e.g., phoneme level, word level and semantic level, are represented at different layers. Effectively integrating information from various levels is important for structured prediction. However, the self-attention in the conventional Transformer structure only focuses on intra-layer integration, and does not explicitly model inter-layer information relationships. Also, attention across the encoder and decoder (cross-coder) only focuses on the top encoder layer but ignores the intermediate layers. In this article, we propose a sequence modeling structure equipped with a hierarchical attention mechanism, named Hiformer, that can consider the inter-layer and cross-coder hierarchical information to improve structured prediction performance. Extensive experiments conducted on both MT and ASR tasks demonstrate the effectiveness of the proposed Hiformer model.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2023.3313428</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Attention ; Automatic speech recognition ; Coders ; Computational modeling ; Decoding ; Encoders-Decoders ; Hierarchical attention mechanism ; Machine translation ; Modelling ; neural machine translation ; Phonemes ; Semantics ; Speech recognition ; Task analysis ; Training ; transformer ; Transformers ; Voice recognition</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2023, Vol.31, p.3993-4003</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-82ce2da95daaf238b740c4ed6a9e2d9aaf95d499592761d55d74b4a7e172bc0c3</cites><orcidid>0000-0002-7698-6262 ; 0000-0001-9543-1572 ; 0000-0002-4427-3532 ; 0000-0002-6780-4391 ; 0000-0001-8533-0524 ; 0000-0001-6725-1160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10244068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10244068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Xixin</creatorcontrib><creatorcontrib>Lu, Hui</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Wu, Zhiyong</creatorcontrib><creatorcontrib>Liu, Xunying</creatorcontrib><creatorcontrib>Meng, Helen</creatorcontrib><title>Hiformer: Sequence Modeling Networks With Hierarchical Attention Mechanisms</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>The attention-based encoder-decoder structure, such as the Transformer, has achieved state-of-the-art performance on various sequence modeling tasks, e.g., machine translation (MT) and automatic speech recognition (ASR), benefited from the superior capability of layer-wise self-attention mechanism in the encoder/decoder to access long-distance contextual information. Recently, analysis on the Transformer layers has shown that different levels of information, e.g., phoneme level, word level and semantic level, are represented at different layers. Effectively integrating information from various levels is important for structured prediction. However, the self-attention in the conventional Transformer structure only focuses on intra-layer integration, and does not explicitly model inter-layer information relationships. Also, attention across the encoder and decoder (cross-coder) only focuses on the top encoder layer but ignores the intermediate layers. In this article, we propose a sequence modeling structure equipped with a hierarchical attention mechanism, named Hiformer, that can consider the inter-layer and cross-coder hierarchical information to improve structured prediction performance. Extensive experiments conducted on both MT and ASR tasks demonstrate the effectiveness of the proposed Hiformer model.</description><subject>Attention</subject><subject>Automatic speech recognition</subject><subject>Coders</subject><subject>Computational modeling</subject><subject>Decoding</subject><subject>Encoders-Decoders</subject><subject>Hierarchical attention mechanism</subject><subject>Machine translation</subject><subject>Modelling</subject><subject>neural machine translation</subject><subject>Phonemes</subject><subject>Semantics</subject><subject>Speech recognition</subject><subject>Task analysis</subject><subject>Training</subject><subject>transformer</subject><subject>Transformers</subject><subject>Voice recognition</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT9AsbDJp4Xp3-Wbr0RomIENQHjsSndWSnCLrYlxm9vEUw8zeTNezOTHyEXFHqUgrqeDabjlx4DxnucUy5YeUQ6jDOVKw7i-K9nCk7JeQhLAKAglZKiQx5Hrm79Gv1NNsXPLTYWs0lb4co179kTxq_Wf4TszcVFNnLojbcLZ80qG8SITXRtk03QLkzjwjqckZParAKeH2qXvN7dzoajfPx8_zAcjHPLhIx5ySyyyqiiMqZmvJxLAVZg1Tcq6SqJaSSUKhSTfVoVRSXFXBiJVLK5Bcu75Gq_d-Pb9HKIetlufZNOalaWtABIyeRie5f1bQgea73xbm38t6agd9z0Lze946YP3FLoch9yiPgvwISAfsl_AHEEacg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wu, Xixin</creator><creator>Lu, Hui</creator><creator>Li, Kun</creator><creator>Wu, Zhiyong</creator><creator>Liu, Xunying</creator><creator>Meng, Helen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7T9</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7698-6262</orcidid><orcidid>https://orcid.org/0000-0001-9543-1572</orcidid><orcidid>https://orcid.org/0000-0002-4427-3532</orcidid><orcidid>https://orcid.org/0000-0002-6780-4391</orcidid><orcidid>https://orcid.org/0000-0001-8533-0524</orcidid><orcidid>https://orcid.org/0000-0001-6725-1160</orcidid></search><sort><creationdate>2023</creationdate><title>Hiformer: Sequence Modeling Networks With Hierarchical Attention Mechanisms</title><author>Wu, Xixin ; Lu, Hui ; Li, Kun ; Wu, Zhiyong ; Liu, Xunying ; Meng, Helen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-82ce2da95daaf238b740c4ed6a9e2d9aaf95d499592761d55d74b4a7e172bc0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention</topic><topic>Automatic speech recognition</topic><topic>Coders</topic><topic>Computational modeling</topic><topic>Decoding</topic><topic>Encoders-Decoders</topic><topic>Hierarchical attention mechanism</topic><topic>Machine translation</topic><topic>Modelling</topic><topic>neural machine translation</topic><topic>Phonemes</topic><topic>Semantics</topic><topic>Speech recognition</topic><topic>Task analysis</topic><topic>Training</topic><topic>transformer</topic><topic>Transformers</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xixin</creatorcontrib><creatorcontrib>Lu, Hui</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><creatorcontrib>Wu, Zhiyong</creatorcontrib><creatorcontrib>Liu, Xunying</creatorcontrib><creatorcontrib>Meng, Helen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Xixin</au><au>Lu, Hui</au><au>Li, Kun</au><au>Wu, Zhiyong</au><au>Liu, Xunying</au><au>Meng, Helen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hiformer: Sequence Modeling Networks With Hierarchical Attention Mechanisms</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2023</date><risdate>2023</risdate><volume>31</volume><spage>3993</spage><epage>4003</epage><pages>3993-4003</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>The attention-based encoder-decoder structure, such as the Transformer, has achieved state-of-the-art performance on various sequence modeling tasks, e.g., machine translation (MT) and automatic speech recognition (ASR), benefited from the superior capability of layer-wise self-attention mechanism in the encoder/decoder to access long-distance contextual information. Recently, analysis on the Transformer layers has shown that different levels of information, e.g., phoneme level, word level and semantic level, are represented at different layers. Effectively integrating information from various levels is important for structured prediction. However, the self-attention in the conventional Transformer structure only focuses on intra-layer integration, and does not explicitly model inter-layer information relationships. Also, attention across the encoder and decoder (cross-coder) only focuses on the top encoder layer but ignores the intermediate layers. In this article, we propose a sequence modeling structure equipped with a hierarchical attention mechanism, named Hiformer, that can consider the inter-layer and cross-coder hierarchical information to improve structured prediction performance. Extensive experiments conducted on both MT and ASR tasks demonstrate the effectiveness of the proposed Hiformer model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2023.3313428</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7698-6262</orcidid><orcidid>https://orcid.org/0000-0001-9543-1572</orcidid><orcidid>https://orcid.org/0000-0002-4427-3532</orcidid><orcidid>https://orcid.org/0000-0002-6780-4391</orcidid><orcidid>https://orcid.org/0000-0001-8533-0524</orcidid><orcidid>https://orcid.org/0000-0001-6725-1160</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2023, Vol.31, p.3993-4003
issn 2329-9290
2329-9304
language eng
recordid cdi_ieee_primary_10244068
source IEEE Electronic Library (IEL)
subjects Attention
Automatic speech recognition
Coders
Computational modeling
Decoding
Encoders-Decoders
Hierarchical attention mechanism
Machine translation
Modelling
neural machine translation
Phonemes
Semantics
Speech recognition
Task analysis
Training
transformer
Transformers
Voice recognition
title Hiformer: Sequence Modeling Networks With Hierarchical Attention Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hiformer:%20Sequence%20Modeling%20Networks%20With%20Hierarchical%20Attention%20Mechanisms&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Wu,%20Xixin&rft.date=2023&rft.volume=31&rft.spage=3993&rft.epage=4003&rft.pages=3993-4003&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2023.3313428&rft_dat=%3Cproquest_RIE%3E2881500927%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881500927&rft_id=info:pmid/&rft_ieee_id=10244068&rfr_iscdi=true