Dual Level Adaptive Weighting for Cloth-Changing Person Re-Identification
For the long-term person re-identification (ReID) task, pedestrians are likely to change clothes, which poses a key challenge in overcoming drastic appearance variations caused by these cloth changes. However, analyzing how cloth changes influence identity-invariant representation learning is diffic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023, Vol.32, p.5075-5086 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the long-term person re-identification (ReID) task, pedestrians are likely to change clothes, which poses a key challenge in overcoming drastic appearance variations caused by these cloth changes. However, analyzing how cloth changes influence identity-invariant representation learning is difficult. In this context, varying cloth-changed samples are not adaptively utilized, and their effects on the resulting features are overshadowed. To address these limitations, this paper aims to estimate the effect of cloth-changing patterns at both the image and feature levels, presenting a Dual-Level Adaptive Weighting (DLAW) solution. Specifically, at the image level, we propose an adaptive mining strategy to locate the cloth-changed regions for each identity. This strategy highlights the informative areas that have undergone changes, enhancing robustness against cloth variations. At the feature level, we estimate the degree of cloth-changing by modeling the correlation of part-level features and re-weighting identity-invariant feature components. This further eliminates the effects of cloth variations at the semantic body part level. Extensive experiments demonstrate that our method achieves promising performance on several cloth-changing datasets. Code and models are available at https: //github.com/fountaindream/DLAW. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2023.3310307 |