Dual Level Adaptive Weighting for Cloth-Changing Person Re-Identification

For the long-term person re-identification (ReID) task, pedestrians are likely to change clothes, which poses a key challenge in overcoming drastic appearance variations caused by these cloth changes. However, analyzing how cloth changes influence identity-invariant representation learning is diffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023, Vol.32, p.5075-5086
Hauptverfasser: Liu, Fangyi, Ye, Mang, Du, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the long-term person re-identification (ReID) task, pedestrians are likely to change clothes, which poses a key challenge in overcoming drastic appearance variations caused by these cloth changes. However, analyzing how cloth changes influence identity-invariant representation learning is difficult. In this context, varying cloth-changed samples are not adaptively utilized, and their effects on the resulting features are overshadowed. To address these limitations, this paper aims to estimate the effect of cloth-changing patterns at both the image and feature levels, presenting a Dual-Level Adaptive Weighting (DLAW) solution. Specifically, at the image level, we propose an adaptive mining strategy to locate the cloth-changed regions for each identity. This strategy highlights the informative areas that have undergone changes, enhancing robustness against cloth variations. At the feature level, we estimate the degree of cloth-changing by modeling the correlation of part-level features and re-weighting identity-invariant feature components. This further eliminates the effects of cloth variations at the semantic body part level. Extensive experiments demonstrate that our method achieves promising performance on several cloth-changing datasets. Code and models are available at https: //github.com/fountaindream/DLAW.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2023.3310307