Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas
We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encomp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2023-11, Vol.51 (11), p.3407-3425 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3425 |
---|---|
container_issue | 11 |
container_start_page | 3407 |
container_title | IEEE transactions on plasma science |
container_volume | 51 |
creator | Maron, Y. Doron, R. Cvejic, M. Stambulchik, E. Mikitchuk, D. Stollberg, C. Queller, T. Kroupp, E. Rosenzweig, G. Rubinstein, B. Biswas, S. Bernshtam, V. Nedostup, O. Litmanovich, V. Fisher, V. Starobinets, A. Fruchtman, A. Fisher, A. Tangri, V. Giuliani, J. L. Velikovich, A. L. Dasgupta, A. Ochs, I. E. Kolmes, E. J. Mlodik, M. E. Davidovits, S. Fisch, N. J. Johnston, M. D. |
description | We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration). |
doi_str_mv | 10.1109/TPS.2023.3296561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10236945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10236945</ieee_id><sourcerecordid>2898655974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xd-wR9YMiFRGpZSVynUtx1TrBToX670lVBqYb7nnf0z0I3VMyopSYp1WxHDHC-Igzo6SiF2hADTeZ4bm8RANCDM-4pvwa3aS0JYQKSdgAfS5bcF1skmta7_AEOoh7H2znm4CbGr_ZTYCu38w87KqEfcDFYZegyormByK2ocJzv_nKpgHi5phNICTfHXGxs2lv0y26qm2P3_3NIfqYTVfjebZ4f3kdPy8yxwzrMlUxV1MmiFMVlc5aR0DRnEnBhTJK50JabddraTmTNXMOtCasJgLoutaW8CF6PPe2sfk-QOrKbXOIoT9ZMm20ktLkoqfImXL9wylCXbbR7208lpSUJ4tlb7E8WSz_LPaRh3PEA8A_nHFlhOS_pY1uJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898655974</pqid></control><display><type>article</type><title>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</title><source>IEEE Electronic Library (IEL)</source><creator>Maron, Y. ; Doron, R. ; Cvejic, M. ; Stambulchik, E. ; Mikitchuk, D. ; Stollberg, C. ; Queller, T. ; Kroupp, E. ; Rosenzweig, G. ; Rubinstein, B. ; Biswas, S. ; Bernshtam, V. ; Nedostup, O. ; Litmanovich, V. ; Fisher, V. ; Starobinets, A. ; Fruchtman, A. ; Fisher, A. ; Tangri, V. ; Giuliani, J. L. ; Velikovich, A. L. ; Dasgupta, A. ; Ochs, I. E. ; Kolmes, E. J. ; Mlodik, M. E. ; Davidovits, S. ; Fisch, N. J. ; Johnston, M. D.</creator><creatorcontrib>Maron, Y. ; Doron, R. ; Cvejic, M. ; Stambulchik, E. ; Mikitchuk, D. ; Stollberg, C. ; Queller, T. ; Kroupp, E. ; Rosenzweig, G. ; Rubinstein, B. ; Biswas, S. ; Bernshtam, V. ; Nedostup, O. ; Litmanovich, V. ; Fisher, V. ; Starobinets, A. ; Fruchtman, A. ; Fisher, A. ; Tangri, V. ; Giuliani, J. L. ; Velikovich, A. L. ; Dasgupta, A. ; Ochs, I. E. ; Kolmes, E. J. ; Mlodik, M. E. ; Davidovits, S. ; Fisch, N. J. ; Johnston, M. D.</creatorcontrib><description>We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration).</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2023.3296561</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Configurations ; Cylindrical plasmas ; Density ; Diodes ; Electron and ion Diodes ; Electrons ; Energy balance ; Evolution ; Extraterrestrial measurements ; Ions ; line-shape analysis ; Magnetic field measurement ; Magnetic fields ; Magnetic shielding ; magnetic-field measurements ; Plasma ; Plasma dynamics ; Plasma measurements ; plasma opening switch (POS) ; plasma spectroscopy ; Plasma temperature ; Plasmas ; polarization spectroscopy ; pulsed-power systems ; Relativistic effects ; Rotating plasmas ; Spectroscopy ; Stagnation point ; Temperature measurement ; Z-pinch ; Zeta pinch</subject><ispartof>IEEE transactions on plasma science, 2023-11, Vol.51 (11), p.3407-3425</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</citedby><cites>FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</cites><orcidid>0000-0001-7684-6932 ; 0000-0001-6793-3786 ; 0000-0002-0347-1495 ; 0000-0002-2782-6246 ; 0000-0003-3841-0091 ; 0000-0003-1977-7779 ; 0000-0003-4300-3941 ; 0009-0003-3419-6451 ; 0000-0001-5303-5299 ; 0000-0001-9297-9233 ; 0009-0004-0398-9712 ; 0000-0002-6365-666X ; 0000-0003-3645-3637 ; 0000-0002-4808-7286 ; 0000-0001-8471-3662 ; 0000-0002-7100-8793 ; 0000-0002-6002-9169 ; 0000-0002-3384-9778 ; 0000-0001-5812-7782 ; 0000-0001-6102-0898 ; 0000-0002-0301-7380 ; 0000-0001-9361-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10236945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10236945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Cvejic, M.</creatorcontrib><creatorcontrib>Stambulchik, E.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Stollberg, C.</creatorcontrib><creatorcontrib>Queller, T.</creatorcontrib><creatorcontrib>Kroupp, E.</creatorcontrib><creatorcontrib>Rosenzweig, G.</creatorcontrib><creatorcontrib>Rubinstein, B.</creatorcontrib><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Bernshtam, V.</creatorcontrib><creatorcontrib>Nedostup, O.</creatorcontrib><creatorcontrib>Litmanovich, V.</creatorcontrib><creatorcontrib>Fisher, V.</creatorcontrib><creatorcontrib>Starobinets, A.</creatorcontrib><creatorcontrib>Fruchtman, A.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Tangri, V.</creatorcontrib><creatorcontrib>Giuliani, J. L.</creatorcontrib><creatorcontrib>Velikovich, A. L.</creatorcontrib><creatorcontrib>Dasgupta, A.</creatorcontrib><creatorcontrib>Ochs, I. E.</creatorcontrib><creatorcontrib>Kolmes, E. J.</creatorcontrib><creatorcontrib>Mlodik, M. E.</creatorcontrib><creatorcontrib>Davidovits, S.</creatorcontrib><creatorcontrib>Fisch, N. J.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><title>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration).</description><subject>Configurations</subject><subject>Cylindrical plasmas</subject><subject>Density</subject><subject>Diodes</subject><subject>Electron and ion Diodes</subject><subject>Electrons</subject><subject>Energy balance</subject><subject>Evolution</subject><subject>Extraterrestrial measurements</subject><subject>Ions</subject><subject>line-shape analysis</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic shielding</subject><subject>magnetic-field measurements</subject><subject>Plasma</subject><subject>Plasma dynamics</subject><subject>Plasma measurements</subject><subject>plasma opening switch (POS)</subject><subject>plasma spectroscopy</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>polarization spectroscopy</subject><subject>pulsed-power systems</subject><subject>Relativistic effects</subject><subject>Rotating plasmas</subject><subject>Spectroscopy</subject><subject>Stagnation point</subject><subject>Temperature measurement</subject><subject>Z-pinch</subject><subject>Zeta pinch</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xd-wR9YMiFRGpZSVynUtx1TrBToX670lVBqYb7nnf0z0I3VMyopSYp1WxHDHC-Igzo6SiF2hADTeZ4bm8RANCDM-4pvwa3aS0JYQKSdgAfS5bcF1skmta7_AEOoh7H2znm4CbGr_ZTYCu38w87KqEfcDFYZegyormByK2ocJzv_nKpgHi5phNICTfHXGxs2lv0y26qm2P3_3NIfqYTVfjebZ4f3kdPy8yxwzrMlUxV1MmiFMVlc5aR0DRnEnBhTJK50JabddraTmTNXMOtCasJgLoutaW8CF6PPe2sfk-QOrKbXOIoT9ZMm20ktLkoqfImXL9wylCXbbR7208lpSUJ4tlb7E8WSz_LPaRh3PEA8A_nHFlhOS_pY1uJg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Maron, Y.</creator><creator>Doron, R.</creator><creator>Cvejic, M.</creator><creator>Stambulchik, E.</creator><creator>Mikitchuk, D.</creator><creator>Stollberg, C.</creator><creator>Queller, T.</creator><creator>Kroupp, E.</creator><creator>Rosenzweig, G.</creator><creator>Rubinstein, B.</creator><creator>Biswas, S.</creator><creator>Bernshtam, V.</creator><creator>Nedostup, O.</creator><creator>Litmanovich, V.</creator><creator>Fisher, V.</creator><creator>Starobinets, A.</creator><creator>Fruchtman, A.</creator><creator>Fisher, A.</creator><creator>Tangri, V.</creator><creator>Giuliani, J. L.</creator><creator>Velikovich, A. L.</creator><creator>Dasgupta, A.</creator><creator>Ochs, I. E.</creator><creator>Kolmes, E. J.</creator><creator>Mlodik, M. E.</creator><creator>Davidovits, S.</creator><creator>Fisch, N. J.</creator><creator>Johnston, M. D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7684-6932</orcidid><orcidid>https://orcid.org/0000-0001-6793-3786</orcidid><orcidid>https://orcid.org/0000-0002-0347-1495</orcidid><orcidid>https://orcid.org/0000-0002-2782-6246</orcidid><orcidid>https://orcid.org/0000-0003-3841-0091</orcidid><orcidid>https://orcid.org/0000-0003-1977-7779</orcidid><orcidid>https://orcid.org/0000-0003-4300-3941</orcidid><orcidid>https://orcid.org/0009-0003-3419-6451</orcidid><orcidid>https://orcid.org/0000-0001-5303-5299</orcidid><orcidid>https://orcid.org/0000-0001-9297-9233</orcidid><orcidid>https://orcid.org/0009-0004-0398-9712</orcidid><orcidid>https://orcid.org/0000-0002-6365-666X</orcidid><orcidid>https://orcid.org/0000-0003-3645-3637</orcidid><orcidid>https://orcid.org/0000-0002-4808-7286</orcidid><orcidid>https://orcid.org/0000-0001-8471-3662</orcidid><orcidid>https://orcid.org/0000-0002-7100-8793</orcidid><orcidid>https://orcid.org/0000-0002-6002-9169</orcidid><orcidid>https://orcid.org/0000-0002-3384-9778</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000-0001-6102-0898</orcidid><orcidid>https://orcid.org/0000-0002-0301-7380</orcidid><orcidid>https://orcid.org/0000-0001-9361-8261</orcidid></search><sort><creationdate>20231101</creationdate><title>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</title><author>Maron, Y. ; Doron, R. ; Cvejic, M. ; Stambulchik, E. ; Mikitchuk, D. ; Stollberg, C. ; Queller, T. ; Kroupp, E. ; Rosenzweig, G. ; Rubinstein, B. ; Biswas, S. ; Bernshtam, V. ; Nedostup, O. ; Litmanovich, V. ; Fisher, V. ; Starobinets, A. ; Fruchtman, A. ; Fisher, A. ; Tangri, V. ; Giuliani, J. L. ; Velikovich, A. L. ; Dasgupta, A. ; Ochs, I. E. ; Kolmes, E. J. ; Mlodik, M. E. ; Davidovits, S. ; Fisch, N. J. ; Johnston, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Configurations</topic><topic>Cylindrical plasmas</topic><topic>Density</topic><topic>Diodes</topic><topic>Electron and ion Diodes</topic><topic>Electrons</topic><topic>Energy balance</topic><topic>Evolution</topic><topic>Extraterrestrial measurements</topic><topic>Ions</topic><topic>line-shape analysis</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic shielding</topic><topic>magnetic-field measurements</topic><topic>Plasma</topic><topic>Plasma dynamics</topic><topic>Plasma measurements</topic><topic>plasma opening switch (POS)</topic><topic>plasma spectroscopy</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>polarization spectroscopy</topic><topic>pulsed-power systems</topic><topic>Relativistic effects</topic><topic>Rotating plasmas</topic><topic>Spectroscopy</topic><topic>Stagnation point</topic><topic>Temperature measurement</topic><topic>Z-pinch</topic><topic>Zeta pinch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Cvejic, M.</creatorcontrib><creatorcontrib>Stambulchik, E.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Stollberg, C.</creatorcontrib><creatorcontrib>Queller, T.</creatorcontrib><creatorcontrib>Kroupp, E.</creatorcontrib><creatorcontrib>Rosenzweig, G.</creatorcontrib><creatorcontrib>Rubinstein, B.</creatorcontrib><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Bernshtam, V.</creatorcontrib><creatorcontrib>Nedostup, O.</creatorcontrib><creatorcontrib>Litmanovich, V.</creatorcontrib><creatorcontrib>Fisher, V.</creatorcontrib><creatorcontrib>Starobinets, A.</creatorcontrib><creatorcontrib>Fruchtman, A.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Tangri, V.</creatorcontrib><creatorcontrib>Giuliani, J. L.</creatorcontrib><creatorcontrib>Velikovich, A. L.</creatorcontrib><creatorcontrib>Dasgupta, A.</creatorcontrib><creatorcontrib>Ochs, I. E.</creatorcontrib><creatorcontrib>Kolmes, E. J.</creatorcontrib><creatorcontrib>Mlodik, M. E.</creatorcontrib><creatorcontrib>Davidovits, S.</creatorcontrib><creatorcontrib>Fisch, N. J.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maron, Y.</au><au>Doron, R.</au><au>Cvejic, M.</au><au>Stambulchik, E.</au><au>Mikitchuk, D.</au><au>Stollberg, C.</au><au>Queller, T.</au><au>Kroupp, E.</au><au>Rosenzweig, G.</au><au>Rubinstein, B.</au><au>Biswas, S.</au><au>Bernshtam, V.</au><au>Nedostup, O.</au><au>Litmanovich, V.</au><au>Fisher, V.</au><au>Starobinets, A.</au><au>Fruchtman, A.</au><au>Fisher, A.</au><au>Tangri, V.</au><au>Giuliani, J. L.</au><au>Velikovich, A. L.</au><au>Dasgupta, A.</au><au>Ochs, I. E.</au><au>Kolmes, E. J.</au><au>Mlodik, M. E.</au><au>Davidovits, S.</au><au>Fisch, N. J.</au><au>Johnston, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>51</volume><issue>11</issue><spage>3407</spage><epage>3425</epage><pages>3407-3425</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2023.3296561</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7684-6932</orcidid><orcidid>https://orcid.org/0000-0001-6793-3786</orcidid><orcidid>https://orcid.org/0000-0002-0347-1495</orcidid><orcidid>https://orcid.org/0000-0002-2782-6246</orcidid><orcidid>https://orcid.org/0000-0003-3841-0091</orcidid><orcidid>https://orcid.org/0000-0003-1977-7779</orcidid><orcidid>https://orcid.org/0000-0003-4300-3941</orcidid><orcidid>https://orcid.org/0009-0003-3419-6451</orcidid><orcidid>https://orcid.org/0000-0001-5303-5299</orcidid><orcidid>https://orcid.org/0000-0001-9297-9233</orcidid><orcidid>https://orcid.org/0009-0004-0398-9712</orcidid><orcidid>https://orcid.org/0000-0002-6365-666X</orcidid><orcidid>https://orcid.org/0000-0003-3645-3637</orcidid><orcidid>https://orcid.org/0000-0002-4808-7286</orcidid><orcidid>https://orcid.org/0000-0001-8471-3662</orcidid><orcidid>https://orcid.org/0000-0002-7100-8793</orcidid><orcidid>https://orcid.org/0000-0002-6002-9169</orcidid><orcidid>https://orcid.org/0000-0002-3384-9778</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000-0001-6102-0898</orcidid><orcidid>https://orcid.org/0000-0002-0301-7380</orcidid><orcidid>https://orcid.org/0000-0001-9361-8261</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2023-11, Vol.51 (11), p.3407-3425 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_10236945 |
source | IEEE Electronic Library (IEL) |
subjects | Configurations Cylindrical plasmas Density Diodes Electron and ion Diodes Electrons Energy balance Evolution Extraterrestrial measurements Ions line-shape analysis Magnetic field measurement Magnetic fields Magnetic shielding magnetic-field measurements Plasma Plasma dynamics Plasma measurements plasma opening switch (POS) plasma spectroscopy Plasma temperature Plasmas polarization spectroscopy pulsed-power systems Relativistic effects Rotating plasmas Spectroscopy Stagnation point Temperature measurement Z-pinch Zeta pinch |
title | Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20Determination%20of%20Magnetic%20Fields%20in%20Pulsed-Power%20and%20High-Energy-Density%20Plasmas&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Maron,%20Y.&rft.date=2023-11-01&rft.volume=51&rft.issue=11&rft.spage=3407&rft.epage=3425&rft.pages=3407-3425&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2023.3296561&rft_dat=%3Cproquest_RIE%3E2898655974%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898655974&rft_id=info:pmid/&rft_ieee_id=10236945&rfr_iscdi=true |