Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas

We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encomp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2023-11, Vol.51 (11), p.3407-3425
Hauptverfasser: Maron, Y., Doron, R., Cvejic, M., Stambulchik, E., Mikitchuk, D., Stollberg, C., Queller, T., Kroupp, E., Rosenzweig, G., Rubinstein, B., Biswas, S., Bernshtam, V., Nedostup, O., Litmanovich, V., Fisher, V., Starobinets, A., Fruchtman, A., Fisher, A., Tangri, V., Giuliani, J. L., Velikovich, A. L., Dasgupta, A., Ochs, I. E., Kolmes, E. J., Mlodik, M. E., Davidovits, S., Fisch, N. J., Johnston, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3425
container_issue 11
container_start_page 3407
container_title IEEE transactions on plasma science
container_volume 51
creator Maron, Y.
Doron, R.
Cvejic, M.
Stambulchik, E.
Mikitchuk, D.
Stollberg, C.
Queller, T.
Kroupp, E.
Rosenzweig, G.
Rubinstein, B.
Biswas, S.
Bernshtam, V.
Nedostup, O.
Litmanovich, V.
Fisher, V.
Starobinets, A.
Fruchtman, A.
Fisher, A.
Tangri, V.
Giuliani, J. L.
Velikovich, A. L.
Dasgupta, A.
Ochs, I. E.
Kolmes, E. J.
Mlodik, M. E.
Davidovits, S.
Fisch, N. J.
Johnston, M. D.
description We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration).
doi_str_mv 10.1109/TPS.2023.3296561
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10236945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10236945</ieee_id><sourcerecordid>2898655974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xd-wR9YMiFRGpZSVynUtx1TrBToX670lVBqYb7nnf0z0I3VMyopSYp1WxHDHC-Igzo6SiF2hADTeZ4bm8RANCDM-4pvwa3aS0JYQKSdgAfS5bcF1skmta7_AEOoh7H2znm4CbGr_ZTYCu38w87KqEfcDFYZegyormByK2ocJzv_nKpgHi5phNICTfHXGxs2lv0y26qm2P3_3NIfqYTVfjebZ4f3kdPy8yxwzrMlUxV1MmiFMVlc5aR0DRnEnBhTJK50JabddraTmTNXMOtCasJgLoutaW8CF6PPe2sfk-QOrKbXOIoT9ZMm20ktLkoqfImXL9wylCXbbR7208lpSUJ4tlb7E8WSz_LPaRh3PEA8A_nHFlhOS_pY1uJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898655974</pqid></control><display><type>article</type><title>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</title><source>IEEE Electronic Library (IEL)</source><creator>Maron, Y. ; Doron, R. ; Cvejic, M. ; Stambulchik, E. ; Mikitchuk, D. ; Stollberg, C. ; Queller, T. ; Kroupp, E. ; Rosenzweig, G. ; Rubinstein, B. ; Biswas, S. ; Bernshtam, V. ; Nedostup, O. ; Litmanovich, V. ; Fisher, V. ; Starobinets, A. ; Fruchtman, A. ; Fisher, A. ; Tangri, V. ; Giuliani, J. L. ; Velikovich, A. L. ; Dasgupta, A. ; Ochs, I. E. ; Kolmes, E. J. ; Mlodik, M. E. ; Davidovits, S. ; Fisch, N. J. ; Johnston, M. D.</creator><creatorcontrib>Maron, Y. ; Doron, R. ; Cvejic, M. ; Stambulchik, E. ; Mikitchuk, D. ; Stollberg, C. ; Queller, T. ; Kroupp, E. ; Rosenzweig, G. ; Rubinstein, B. ; Biswas, S. ; Bernshtam, V. ; Nedostup, O. ; Litmanovich, V. ; Fisher, V. ; Starobinets, A. ; Fruchtman, A. ; Fisher, A. ; Tangri, V. ; Giuliani, J. L. ; Velikovich, A. L. ; Dasgupta, A. ; Ochs, I. E. ; Kolmes, E. J. ; Mlodik, M. E. ; Davidovits, S. ; Fisch, N. J. ; Johnston, M. D.</creatorcontrib><description>We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration).</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2023.3296561</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Configurations ; Cylindrical plasmas ; Density ; Diodes ; Electron and ion Diodes ; Electrons ; Energy balance ; Evolution ; Extraterrestrial measurements ; Ions ; line-shape analysis ; Magnetic field measurement ; Magnetic fields ; Magnetic shielding ; magnetic-field measurements ; Plasma ; Plasma dynamics ; Plasma measurements ; plasma opening switch (POS) ; plasma spectroscopy ; Plasma temperature ; Plasmas ; polarization spectroscopy ; pulsed-power systems ; Relativistic effects ; Rotating plasmas ; Spectroscopy ; Stagnation point ; Temperature measurement ; Z-pinch ; Zeta pinch</subject><ispartof>IEEE transactions on plasma science, 2023-11, Vol.51 (11), p.3407-3425</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</citedby><cites>FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</cites><orcidid>0000-0001-7684-6932 ; 0000-0001-6793-3786 ; 0000-0002-0347-1495 ; 0000-0002-2782-6246 ; 0000-0003-3841-0091 ; 0000-0003-1977-7779 ; 0000-0003-4300-3941 ; 0009-0003-3419-6451 ; 0000-0001-5303-5299 ; 0000-0001-9297-9233 ; 0009-0004-0398-9712 ; 0000-0002-6365-666X ; 0000-0003-3645-3637 ; 0000-0002-4808-7286 ; 0000-0001-8471-3662 ; 0000-0002-7100-8793 ; 0000-0002-6002-9169 ; 0000-0002-3384-9778 ; 0000-0001-5812-7782 ; 0000-0001-6102-0898 ; 0000-0002-0301-7380 ; 0000-0001-9361-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10236945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10236945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Cvejic, M.</creatorcontrib><creatorcontrib>Stambulchik, E.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Stollberg, C.</creatorcontrib><creatorcontrib>Queller, T.</creatorcontrib><creatorcontrib>Kroupp, E.</creatorcontrib><creatorcontrib>Rosenzweig, G.</creatorcontrib><creatorcontrib>Rubinstein, B.</creatorcontrib><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Bernshtam, V.</creatorcontrib><creatorcontrib>Nedostup, O.</creatorcontrib><creatorcontrib>Litmanovich, V.</creatorcontrib><creatorcontrib>Fisher, V.</creatorcontrib><creatorcontrib>Starobinets, A.</creatorcontrib><creatorcontrib>Fruchtman, A.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Tangri, V.</creatorcontrib><creatorcontrib>Giuliani, J. L.</creatorcontrib><creatorcontrib>Velikovich, A. L.</creatorcontrib><creatorcontrib>Dasgupta, A.</creatorcontrib><creatorcontrib>Ochs, I. E.</creatorcontrib><creatorcontrib>Kolmes, E. J.</creatorcontrib><creatorcontrib>Mlodik, M. E.</creatorcontrib><creatorcontrib>Davidovits, S.</creatorcontrib><creatorcontrib>Fisch, N. J.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><title>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration).</description><subject>Configurations</subject><subject>Cylindrical plasmas</subject><subject>Density</subject><subject>Diodes</subject><subject>Electron and ion Diodes</subject><subject>Electrons</subject><subject>Energy balance</subject><subject>Evolution</subject><subject>Extraterrestrial measurements</subject><subject>Ions</subject><subject>line-shape analysis</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic shielding</subject><subject>magnetic-field measurements</subject><subject>Plasma</subject><subject>Plasma dynamics</subject><subject>Plasma measurements</subject><subject>plasma opening switch (POS)</subject><subject>plasma spectroscopy</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>polarization spectroscopy</subject><subject>pulsed-power systems</subject><subject>Relativistic effects</subject><subject>Rotating plasmas</subject><subject>Spectroscopy</subject><subject>Stagnation point</subject><subject>Temperature measurement</subject><subject>Z-pinch</subject><subject>Zeta pinch</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xd-wR9YMiFRGpZSVynUtx1TrBToX670lVBqYb7nnf0z0I3VMyopSYp1WxHDHC-Igzo6SiF2hADTeZ4bm8RANCDM-4pvwa3aS0JYQKSdgAfS5bcF1skmta7_AEOoh7H2znm4CbGr_ZTYCu38w87KqEfcDFYZegyormByK2ocJzv_nKpgHi5phNICTfHXGxs2lv0y26qm2P3_3NIfqYTVfjebZ4f3kdPy8yxwzrMlUxV1MmiFMVlc5aR0DRnEnBhTJK50JabddraTmTNXMOtCasJgLoutaW8CF6PPe2sfk-QOrKbXOIoT9ZMm20ktLkoqfImXL9wylCXbbR7208lpSUJ4tlb7E8WSz_LPaRh3PEA8A_nHFlhOS_pY1uJg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Maron, Y.</creator><creator>Doron, R.</creator><creator>Cvejic, M.</creator><creator>Stambulchik, E.</creator><creator>Mikitchuk, D.</creator><creator>Stollberg, C.</creator><creator>Queller, T.</creator><creator>Kroupp, E.</creator><creator>Rosenzweig, G.</creator><creator>Rubinstein, B.</creator><creator>Biswas, S.</creator><creator>Bernshtam, V.</creator><creator>Nedostup, O.</creator><creator>Litmanovich, V.</creator><creator>Fisher, V.</creator><creator>Starobinets, A.</creator><creator>Fruchtman, A.</creator><creator>Fisher, A.</creator><creator>Tangri, V.</creator><creator>Giuliani, J. L.</creator><creator>Velikovich, A. L.</creator><creator>Dasgupta, A.</creator><creator>Ochs, I. E.</creator><creator>Kolmes, E. J.</creator><creator>Mlodik, M. E.</creator><creator>Davidovits, S.</creator><creator>Fisch, N. J.</creator><creator>Johnston, M. D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7684-6932</orcidid><orcidid>https://orcid.org/0000-0001-6793-3786</orcidid><orcidid>https://orcid.org/0000-0002-0347-1495</orcidid><orcidid>https://orcid.org/0000-0002-2782-6246</orcidid><orcidid>https://orcid.org/0000-0003-3841-0091</orcidid><orcidid>https://orcid.org/0000-0003-1977-7779</orcidid><orcidid>https://orcid.org/0000-0003-4300-3941</orcidid><orcidid>https://orcid.org/0009-0003-3419-6451</orcidid><orcidid>https://orcid.org/0000-0001-5303-5299</orcidid><orcidid>https://orcid.org/0000-0001-9297-9233</orcidid><orcidid>https://orcid.org/0009-0004-0398-9712</orcidid><orcidid>https://orcid.org/0000-0002-6365-666X</orcidid><orcidid>https://orcid.org/0000-0003-3645-3637</orcidid><orcidid>https://orcid.org/0000-0002-4808-7286</orcidid><orcidid>https://orcid.org/0000-0001-8471-3662</orcidid><orcidid>https://orcid.org/0000-0002-7100-8793</orcidid><orcidid>https://orcid.org/0000-0002-6002-9169</orcidid><orcidid>https://orcid.org/0000-0002-3384-9778</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000-0001-6102-0898</orcidid><orcidid>https://orcid.org/0000-0002-0301-7380</orcidid><orcidid>https://orcid.org/0000-0001-9361-8261</orcidid></search><sort><creationdate>20231101</creationdate><title>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</title><author>Maron, Y. ; Doron, R. ; Cvejic, M. ; Stambulchik, E. ; Mikitchuk, D. ; Stollberg, C. ; Queller, T. ; Kroupp, E. ; Rosenzweig, G. ; Rubinstein, B. ; Biswas, S. ; Bernshtam, V. ; Nedostup, O. ; Litmanovich, V. ; Fisher, V. ; Starobinets, A. ; Fruchtman, A. ; Fisher, A. ; Tangri, V. ; Giuliani, J. L. ; Velikovich, A. L. ; Dasgupta, A. ; Ochs, I. E. ; Kolmes, E. J. ; Mlodik, M. E. ; Davidovits, S. ; Fisch, N. J. ; Johnston, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6d2cf1240c6d15caac0e617254346968745a8abb5a325f2cce8802f04e1bf8a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Configurations</topic><topic>Cylindrical plasmas</topic><topic>Density</topic><topic>Diodes</topic><topic>Electron and ion Diodes</topic><topic>Electrons</topic><topic>Energy balance</topic><topic>Evolution</topic><topic>Extraterrestrial measurements</topic><topic>Ions</topic><topic>line-shape analysis</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic shielding</topic><topic>magnetic-field measurements</topic><topic>Plasma</topic><topic>Plasma dynamics</topic><topic>Plasma measurements</topic><topic>plasma opening switch (POS)</topic><topic>plasma spectroscopy</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>polarization spectroscopy</topic><topic>pulsed-power systems</topic><topic>Relativistic effects</topic><topic>Rotating plasmas</topic><topic>Spectroscopy</topic><topic>Stagnation point</topic><topic>Temperature measurement</topic><topic>Z-pinch</topic><topic>Zeta pinch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maron, Y.</creatorcontrib><creatorcontrib>Doron, R.</creatorcontrib><creatorcontrib>Cvejic, M.</creatorcontrib><creatorcontrib>Stambulchik, E.</creatorcontrib><creatorcontrib>Mikitchuk, D.</creatorcontrib><creatorcontrib>Stollberg, C.</creatorcontrib><creatorcontrib>Queller, T.</creatorcontrib><creatorcontrib>Kroupp, E.</creatorcontrib><creatorcontrib>Rosenzweig, G.</creatorcontrib><creatorcontrib>Rubinstein, B.</creatorcontrib><creatorcontrib>Biswas, S.</creatorcontrib><creatorcontrib>Bernshtam, V.</creatorcontrib><creatorcontrib>Nedostup, O.</creatorcontrib><creatorcontrib>Litmanovich, V.</creatorcontrib><creatorcontrib>Fisher, V.</creatorcontrib><creatorcontrib>Starobinets, A.</creatorcontrib><creatorcontrib>Fruchtman, A.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Tangri, V.</creatorcontrib><creatorcontrib>Giuliani, J. L.</creatorcontrib><creatorcontrib>Velikovich, A. L.</creatorcontrib><creatorcontrib>Dasgupta, A.</creatorcontrib><creatorcontrib>Ochs, I. E.</creatorcontrib><creatorcontrib>Kolmes, E. J.</creatorcontrib><creatorcontrib>Mlodik, M. E.</creatorcontrib><creatorcontrib>Davidovits, S.</creatorcontrib><creatorcontrib>Fisch, N. J.</creatorcontrib><creatorcontrib>Johnston, M. D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maron, Y.</au><au>Doron, R.</au><au>Cvejic, M.</au><au>Stambulchik, E.</au><au>Mikitchuk, D.</au><au>Stollberg, C.</au><au>Queller, T.</au><au>Kroupp, E.</au><au>Rosenzweig, G.</au><au>Rubinstein, B.</au><au>Biswas, S.</au><au>Bernshtam, V.</au><au>Nedostup, O.</au><au>Litmanovich, V.</au><au>Fisher, V.</au><au>Starobinets, A.</au><au>Fruchtman, A.</au><au>Fisher, A.</au><au>Tangri, V.</au><au>Giuliani, J. L.</au><au>Velikovich, A. L.</au><au>Dasgupta, A.</au><au>Ochs, I. E.</au><au>Kolmes, E. J.</au><au>Mlodik, M. E.</au><au>Davidovits, S.</au><au>Fisch, N. J.</au><au>Johnston, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>51</volume><issue>11</issue><spage>3407</spage><epage>3425</epage><pages>3407-3425</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>We review spectroscopic methods developed for the determination of magnetic fields in high-energy-density (HED) plasmas. In such plasmas, the common Zeeman-splitting magnetic-field diagnostics are often impeded by various broadening mechanisms of the atomic transitions. The methods described, encompassing atomic transitions in the visible and ultraviolet spectral regions, are applied to the study of imploding plasmas (in a Z-pinch configuration) with and without pre-embedded magnetic fields, relativistic-electron focusing diodes, and plasma-opening switches. The measurements of the magnetic field in side-on observations of cylindrical-plasma configurations that are local in the radial direction despite the light integration along the chordal lines of sight are discussed. The evolution of the magnetic-field distributions obtained, together with the measurements of the plasma temperature and density, allows for studying the plasma dynamics, resistivity, and pressure and energy balance. In particular, for the Z-pinch, an intriguing question on the current flow in the imploding plasma was raised due to the observation that the current during stagnation mainly flows at relatively large radii, outside the stagnation region. For the premagnetized plasma implosions, all three components of the magnetic field (azimuthal, axial, and radial) were measured, yielding the evolution of the current flow and the efficiency of the axial field compression, as well as the relation between the geometry of the field and the plasma rotation, found to develop in this configuration. The measurements in the relativistic electron diode are used to quantify the shielding of the magnetic field by the plasmas in the diode. Also described are the experimental and theoretical investigations of a nondiffusive fast penetration of magnetic field into a low-density plasma (in the plasma-opening-switch configuration).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2023.3296561</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7684-6932</orcidid><orcidid>https://orcid.org/0000-0001-6793-3786</orcidid><orcidid>https://orcid.org/0000-0002-0347-1495</orcidid><orcidid>https://orcid.org/0000-0002-2782-6246</orcidid><orcidid>https://orcid.org/0000-0003-3841-0091</orcidid><orcidid>https://orcid.org/0000-0003-1977-7779</orcidid><orcidid>https://orcid.org/0000-0003-4300-3941</orcidid><orcidid>https://orcid.org/0009-0003-3419-6451</orcidid><orcidid>https://orcid.org/0000-0001-5303-5299</orcidid><orcidid>https://orcid.org/0000-0001-9297-9233</orcidid><orcidid>https://orcid.org/0009-0004-0398-9712</orcidid><orcidid>https://orcid.org/0000-0002-6365-666X</orcidid><orcidid>https://orcid.org/0000-0003-3645-3637</orcidid><orcidid>https://orcid.org/0000-0002-4808-7286</orcidid><orcidid>https://orcid.org/0000-0001-8471-3662</orcidid><orcidid>https://orcid.org/0000-0002-7100-8793</orcidid><orcidid>https://orcid.org/0000-0002-6002-9169</orcidid><orcidid>https://orcid.org/0000-0002-3384-9778</orcidid><orcidid>https://orcid.org/0000-0001-5812-7782</orcidid><orcidid>https://orcid.org/0000-0001-6102-0898</orcidid><orcidid>https://orcid.org/0000-0002-0301-7380</orcidid><orcidid>https://orcid.org/0000-0001-9361-8261</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2023-11, Vol.51 (11), p.3407-3425
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_10236945
source IEEE Electronic Library (IEL)
subjects Configurations
Cylindrical plasmas
Density
Diodes
Electron and ion Diodes
Electrons
Energy balance
Evolution
Extraterrestrial measurements
Ions
line-shape analysis
Magnetic field measurement
Magnetic fields
Magnetic shielding
magnetic-field measurements
Plasma
Plasma dynamics
Plasma measurements
plasma opening switch (POS)
plasma spectroscopy
Plasma temperature
Plasmas
polarization spectroscopy
pulsed-power systems
Relativistic effects
Rotating plasmas
Spectroscopy
Stagnation point
Temperature measurement
Z-pinch
Zeta pinch
title Spectroscopic Determination of Magnetic Fields in Pulsed-Power and High-Energy-Density Plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20Determination%20of%20Magnetic%20Fields%20in%20Pulsed-Power%20and%20High-Energy-Density%20Plasmas&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Maron,%20Y.&rft.date=2023-11-01&rft.volume=51&rft.issue=11&rft.spage=3407&rft.epage=3425&rft.pages=3407-3425&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2023.3296561&rft_dat=%3Cproquest_RIE%3E2898655974%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898655974&rft_id=info:pmid/&rft_ieee_id=10236945&rfr_iscdi=true