Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials
For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the di...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2023-11, Vol.59 (6), p.7848-7857 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7857 |
---|---|
container_issue | 6 |
container_start_page | 7848 |
container_title | IEEE transactions on industry applications |
container_volume | 59 |
creator | Kang, Jinping Wang, Yubo Li, Liangchen Chen, Pengfei Chen, Jiaqi Zhang, Xueying Cheng, Shaoyu Yang, Fuyao Xu, Guorui Eldeeb, Hassan H. Zhao, Haisen |
description | For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively. |
doi_str_mv | 10.1109/TIA.2023.3310970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10236523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10236523</ieee_id><sourcerecordid>2892368665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-387b1c44a392124bd8f1d61d28daff953e0ee8a3dd9991ada2584434d80bc6ee3</originalsourceid><addsrcrecordid>eNpNUE1PAjEQbYwmInr34KGJ58V-7dIeCVEhgehhjcembGehBFrs7kpM_PGWAImHyXy99ybzELqnZEApUU_ldDRghPEB56kdkgvUo4qrTPFieIl6hCieKaXENbppmjUhVORU9NDv3DVm45Z-C77FZdhANL4CHGo89barWvcN-D3sIeIybZo6FePQ7RIOf7p2hWdhn6JpsPEWT9xyhedm6aF11VkgePwCMYbteT43LURnNs0tuqpTgrtT7qOPl-dyPMlmb6_T8WiWVUzkbcblcEErIQxXjDKxsLKmtqCWSWvqWuUcCIA03Nr0IDXWsFwKwYWVZFEVALyPHo-6uxi-OmhavQ5d9OmkZlIxXsiiyBOKHFFVTP9EqPUuuq2JP5oSffBYJ4_1wWN98jhRHo4UBwD_4EkyZ5z_AcQmeaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892368665</pqid></control><display><type>article</type><title>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Jinping ; Wang, Yubo ; Li, Liangchen ; Chen, Pengfei ; Chen, Jiaqi ; Zhang, Xueying ; Cheng, Shaoyu ; Yang, Fuyao ; Xu, Guorui ; Eldeeb, Hassan H. ; Zhao, Haisen</creator><creatorcontrib>Kang, Jinping ; Wang, Yubo ; Li, Liangchen ; Chen, Pengfei ; Chen, Jiaqi ; Zhang, Xueying ; Cheng, Shaoyu ; Yang, Fuyao ; Xu, Guorui ; Eldeeb, Hassan H. ; Zhao, Haisen</creatorcontrib><description>For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2023.3310970</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous magnetic materials ; Coils ; Couplers ; Efficiency ; Ferrite core ; Ferrites ; Ferromagnetic materials ; finite element analysis (FEA) ; Finite element method ; inductive power transfer (IPT) ; iron losses ; Magnetic cores ; Magnetic flux ; Magnetic induction ; Magnetic materials ; Magnetization ; Mathematical analysis ; Misalignment ; misalignment tolerance ; nanocrystalline core ; Nanocrystals ; Paramagnetism ; Perpendicular magnetic anisotropy ; Power transfer ; Transmission efficiency</subject><ispartof>IEEE transactions on industry applications, 2023-11, Vol.59 (6), p.7848-7857</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-387b1c44a392124bd8f1d61d28daff953e0ee8a3dd9991ada2584434d80bc6ee3</cites><orcidid>0000-0002-5571-9034 ; 0009-0006-5698-5103 ; 0000-0003-3178-2490 ; 0009-0001-5158-5980 ; 0009-0001-1998-6186 ; 0009-0001-9316-7787 ; 0000-0001-6808-4843 ; 0000-0002-4981-940X ; 0009-0003-6329-0033 ; 0009-0005-8942-345X ; 0009-0004-8439-2079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10236523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10236523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Jinping</creatorcontrib><creatorcontrib>Wang, Yubo</creatorcontrib><creatorcontrib>Li, Liangchen</creatorcontrib><creatorcontrib>Chen, Pengfei</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Cheng, Shaoyu</creatorcontrib><creatorcontrib>Yang, Fuyao</creatorcontrib><creatorcontrib>Xu, Guorui</creatorcontrib><creatorcontrib>Eldeeb, Hassan H.</creatorcontrib><creatorcontrib>Zhao, Haisen</creatorcontrib><title>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively.</description><subject>Amorphous magnetic materials</subject><subject>Coils</subject><subject>Couplers</subject><subject>Efficiency</subject><subject>Ferrite core</subject><subject>Ferrites</subject><subject>Ferromagnetic materials</subject><subject>finite element analysis (FEA)</subject><subject>Finite element method</subject><subject>inductive power transfer (IPT)</subject><subject>iron losses</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetic induction</subject><subject>Magnetic materials</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Misalignment</subject><subject>misalignment tolerance</subject><subject>nanocrystalline core</subject><subject>Nanocrystals</subject><subject>Paramagnetism</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Power transfer</subject><subject>Transmission efficiency</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PAjEQbYwmInr34KGJ58V-7dIeCVEhgehhjcembGehBFrs7kpM_PGWAImHyXy99ybzELqnZEApUU_ldDRghPEB56kdkgvUo4qrTPFieIl6hCieKaXENbppmjUhVORU9NDv3DVm45Z-C77FZdhANL4CHGo89barWvcN-D3sIeIybZo6FePQ7RIOf7p2hWdhn6JpsPEWT9xyhedm6aF11VkgePwCMYbteT43LURnNs0tuqpTgrtT7qOPl-dyPMlmb6_T8WiWVUzkbcblcEErIQxXjDKxsLKmtqCWSWvqWuUcCIA03Nr0IDXWsFwKwYWVZFEVALyPHo-6uxi-OmhavQ5d9OmkZlIxXsiiyBOKHFFVTP9EqPUuuq2JP5oSffBYJ4_1wWN98jhRHo4UBwD_4EkyZ5z_AcQmeaE</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Kang, Jinping</creator><creator>Wang, Yubo</creator><creator>Li, Liangchen</creator><creator>Chen, Pengfei</creator><creator>Chen, Jiaqi</creator><creator>Zhang, Xueying</creator><creator>Cheng, Shaoyu</creator><creator>Yang, Fuyao</creator><creator>Xu, Guorui</creator><creator>Eldeeb, Hassan H.</creator><creator>Zhao, Haisen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5571-9034</orcidid><orcidid>https://orcid.org/0009-0006-5698-5103</orcidid><orcidid>https://orcid.org/0000-0003-3178-2490</orcidid><orcidid>https://orcid.org/0009-0001-5158-5980</orcidid><orcidid>https://orcid.org/0009-0001-1998-6186</orcidid><orcidid>https://orcid.org/0009-0001-9316-7787</orcidid><orcidid>https://orcid.org/0000-0001-6808-4843</orcidid><orcidid>https://orcid.org/0000-0002-4981-940X</orcidid><orcidid>https://orcid.org/0009-0003-6329-0033</orcidid><orcidid>https://orcid.org/0009-0005-8942-345X</orcidid><orcidid>https://orcid.org/0009-0004-8439-2079</orcidid></search><sort><creationdate>202311</creationdate><title>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</title><author>Kang, Jinping ; Wang, Yubo ; Li, Liangchen ; Chen, Pengfei ; Chen, Jiaqi ; Zhang, Xueying ; Cheng, Shaoyu ; Yang, Fuyao ; Xu, Guorui ; Eldeeb, Hassan H. ; Zhao, Haisen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-387b1c44a392124bd8f1d61d28daff953e0ee8a3dd9991ada2584434d80bc6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphous magnetic materials</topic><topic>Coils</topic><topic>Couplers</topic><topic>Efficiency</topic><topic>Ferrite core</topic><topic>Ferrites</topic><topic>Ferromagnetic materials</topic><topic>finite element analysis (FEA)</topic><topic>Finite element method</topic><topic>inductive power transfer (IPT)</topic><topic>iron losses</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetic induction</topic><topic>Magnetic materials</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Misalignment</topic><topic>misalignment tolerance</topic><topic>nanocrystalline core</topic><topic>Nanocrystals</topic><topic>Paramagnetism</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Power transfer</topic><topic>Transmission efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jinping</creatorcontrib><creatorcontrib>Wang, Yubo</creatorcontrib><creatorcontrib>Li, Liangchen</creatorcontrib><creatorcontrib>Chen, Pengfei</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Cheng, Shaoyu</creatorcontrib><creatorcontrib>Yang, Fuyao</creatorcontrib><creatorcontrib>Xu, Guorui</creatorcontrib><creatorcontrib>Eldeeb, Hassan H.</creatorcontrib><creatorcontrib>Zhao, Haisen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Jinping</au><au>Wang, Yubo</au><au>Li, Liangchen</au><au>Chen, Pengfei</au><au>Chen, Jiaqi</au><au>Zhang, Xueying</au><au>Cheng, Shaoyu</au><au>Yang, Fuyao</au><au>Xu, Guorui</au><au>Eldeeb, Hassan H.</au><au>Zhao, Haisen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2023-11</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>7848</spage><epage>7857</epage><pages>7848-7857</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2023.3310970</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5571-9034</orcidid><orcidid>https://orcid.org/0009-0006-5698-5103</orcidid><orcidid>https://orcid.org/0000-0003-3178-2490</orcidid><orcidid>https://orcid.org/0009-0001-5158-5980</orcidid><orcidid>https://orcid.org/0009-0001-1998-6186</orcidid><orcidid>https://orcid.org/0009-0001-9316-7787</orcidid><orcidid>https://orcid.org/0000-0001-6808-4843</orcidid><orcidid>https://orcid.org/0000-0002-4981-940X</orcidid><orcidid>https://orcid.org/0009-0003-6329-0033</orcidid><orcidid>https://orcid.org/0009-0005-8942-345X</orcidid><orcidid>https://orcid.org/0009-0004-8439-2079</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2023-11, Vol.59 (6), p.7848-7857 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_10236523 |
source | IEEE Electronic Library (IEL) |
subjects | Amorphous magnetic materials Coils Couplers Efficiency Ferrite core Ferrites Ferromagnetic materials finite element analysis (FEA) Finite element method inductive power transfer (IPT) iron losses Magnetic cores Magnetic flux Magnetic induction Magnetic materials Magnetization Mathematical analysis Misalignment misalignment tolerance nanocrystalline core Nanocrystals Paramagnetism Perpendicular magnetic anisotropy Power transfer Transmission efficiency |
title | Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Misalignment%20Tolerance%20of%20Inductive%20Power%20Transfer%20Coupler%20With%20Low%20Loss%20and%20High%20Magnetic%20Induction%20Ferromagnetic%20Materials&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Kang,%20Jinping&rft.date=2023-11&rft.volume=59&rft.issue=6&rft.spage=7848&rft.epage=7857&rft.pages=7848-7857&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2023.3310970&rft_dat=%3Cproquest_RIE%3E2892368665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892368665&rft_id=info:pmid/&rft_ieee_id=10236523&rfr_iscdi=true |