Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials

For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2023-11, Vol.59 (6), p.7848-7857
Hauptverfasser: Kang, Jinping, Wang, Yubo, Li, Liangchen, Chen, Pengfei, Chen, Jiaqi, Zhang, Xueying, Cheng, Shaoyu, Yang, Fuyao, Xu, Guorui, Eldeeb, Hassan H., Zhao, Haisen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7857
container_issue 6
container_start_page 7848
container_title IEEE transactions on industry applications
container_volume 59
creator Kang, Jinping
Wang, Yubo
Li, Liangchen
Chen, Pengfei
Chen, Jiaqi
Zhang, Xueying
Cheng, Shaoyu
Yang, Fuyao
Xu, Guorui
Eldeeb, Hassan H.
Zhao, Haisen
description For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively.
doi_str_mv 10.1109/TIA.2023.3310970
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10236523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10236523</ieee_id><sourcerecordid>2892368665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-387b1c44a392124bd8f1d61d28daff953e0ee8a3dd9991ada2584434d80bc6ee3</originalsourceid><addsrcrecordid>eNpNUE1PAjEQbYwmInr34KGJ58V-7dIeCVEhgehhjcembGehBFrs7kpM_PGWAImHyXy99ybzELqnZEApUU_ldDRghPEB56kdkgvUo4qrTPFieIl6hCieKaXENbppmjUhVORU9NDv3DVm45Z-C77FZdhANL4CHGo89barWvcN-D3sIeIybZo6FePQ7RIOf7p2hWdhn6JpsPEWT9xyhedm6aF11VkgePwCMYbteT43LURnNs0tuqpTgrtT7qOPl-dyPMlmb6_T8WiWVUzkbcblcEErIQxXjDKxsLKmtqCWSWvqWuUcCIA03Nr0IDXWsFwKwYWVZFEVALyPHo-6uxi-OmhavQ5d9OmkZlIxXsiiyBOKHFFVTP9EqPUuuq2JP5oSffBYJ4_1wWN98jhRHo4UBwD_4EkyZ5z_AcQmeaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892368665</pqid></control><display><type>article</type><title>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Jinping ; Wang, Yubo ; Li, Liangchen ; Chen, Pengfei ; Chen, Jiaqi ; Zhang, Xueying ; Cheng, Shaoyu ; Yang, Fuyao ; Xu, Guorui ; Eldeeb, Hassan H. ; Zhao, Haisen</creator><creatorcontrib>Kang, Jinping ; Wang, Yubo ; Li, Liangchen ; Chen, Pengfei ; Chen, Jiaqi ; Zhang, Xueying ; Cheng, Shaoyu ; Yang, Fuyao ; Xu, Guorui ; Eldeeb, Hassan H. ; Zhao, Haisen</creatorcontrib><description>For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2023.3310970</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous magnetic materials ; Coils ; Couplers ; Efficiency ; Ferrite core ; Ferrites ; Ferromagnetic materials ; finite element analysis (FEA) ; Finite element method ; inductive power transfer (IPT) ; iron losses ; Magnetic cores ; Magnetic flux ; Magnetic induction ; Magnetic materials ; Magnetization ; Mathematical analysis ; Misalignment ; misalignment tolerance ; nanocrystalline core ; Nanocrystals ; Paramagnetism ; Perpendicular magnetic anisotropy ; Power transfer ; Transmission efficiency</subject><ispartof>IEEE transactions on industry applications, 2023-11, Vol.59 (6), p.7848-7857</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-387b1c44a392124bd8f1d61d28daff953e0ee8a3dd9991ada2584434d80bc6ee3</cites><orcidid>0000-0002-5571-9034 ; 0009-0006-5698-5103 ; 0000-0003-3178-2490 ; 0009-0001-5158-5980 ; 0009-0001-1998-6186 ; 0009-0001-9316-7787 ; 0000-0001-6808-4843 ; 0000-0002-4981-940X ; 0009-0003-6329-0033 ; 0009-0005-8942-345X ; 0009-0004-8439-2079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10236523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10236523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Jinping</creatorcontrib><creatorcontrib>Wang, Yubo</creatorcontrib><creatorcontrib>Li, Liangchen</creatorcontrib><creatorcontrib>Chen, Pengfei</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Cheng, Shaoyu</creatorcontrib><creatorcontrib>Yang, Fuyao</creatorcontrib><creatorcontrib>Xu, Guorui</creatorcontrib><creatorcontrib>Eldeeb, Hassan H.</creatorcontrib><creatorcontrib>Zhao, Haisen</creatorcontrib><title>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively.</description><subject>Amorphous magnetic materials</subject><subject>Coils</subject><subject>Couplers</subject><subject>Efficiency</subject><subject>Ferrite core</subject><subject>Ferrites</subject><subject>Ferromagnetic materials</subject><subject>finite element analysis (FEA)</subject><subject>Finite element method</subject><subject>inductive power transfer (IPT)</subject><subject>iron losses</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetic induction</subject><subject>Magnetic materials</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Misalignment</subject><subject>misalignment tolerance</subject><subject>nanocrystalline core</subject><subject>Nanocrystals</subject><subject>Paramagnetism</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Power transfer</subject><subject>Transmission efficiency</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUE1PAjEQbYwmInr34KGJ58V-7dIeCVEhgehhjcembGehBFrs7kpM_PGWAImHyXy99ybzELqnZEApUU_ldDRghPEB56kdkgvUo4qrTPFieIl6hCieKaXENbppmjUhVORU9NDv3DVm45Z-C77FZdhANL4CHGo89barWvcN-D3sIeIybZo6FePQ7RIOf7p2hWdhn6JpsPEWT9xyhedm6aF11VkgePwCMYbteT43LURnNs0tuqpTgrtT7qOPl-dyPMlmb6_T8WiWVUzkbcblcEErIQxXjDKxsLKmtqCWSWvqWuUcCIA03Nr0IDXWsFwKwYWVZFEVALyPHo-6uxi-OmhavQ5d9OmkZlIxXsiiyBOKHFFVTP9EqPUuuq2JP5oSffBYJ4_1wWN98jhRHo4UBwD_4EkyZ5z_AcQmeaE</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Kang, Jinping</creator><creator>Wang, Yubo</creator><creator>Li, Liangchen</creator><creator>Chen, Pengfei</creator><creator>Chen, Jiaqi</creator><creator>Zhang, Xueying</creator><creator>Cheng, Shaoyu</creator><creator>Yang, Fuyao</creator><creator>Xu, Guorui</creator><creator>Eldeeb, Hassan H.</creator><creator>Zhao, Haisen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5571-9034</orcidid><orcidid>https://orcid.org/0009-0006-5698-5103</orcidid><orcidid>https://orcid.org/0000-0003-3178-2490</orcidid><orcidid>https://orcid.org/0009-0001-5158-5980</orcidid><orcidid>https://orcid.org/0009-0001-1998-6186</orcidid><orcidid>https://orcid.org/0009-0001-9316-7787</orcidid><orcidid>https://orcid.org/0000-0001-6808-4843</orcidid><orcidid>https://orcid.org/0000-0002-4981-940X</orcidid><orcidid>https://orcid.org/0009-0003-6329-0033</orcidid><orcidid>https://orcid.org/0009-0005-8942-345X</orcidid><orcidid>https://orcid.org/0009-0004-8439-2079</orcidid></search><sort><creationdate>202311</creationdate><title>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</title><author>Kang, Jinping ; Wang, Yubo ; Li, Liangchen ; Chen, Pengfei ; Chen, Jiaqi ; Zhang, Xueying ; Cheng, Shaoyu ; Yang, Fuyao ; Xu, Guorui ; Eldeeb, Hassan H. ; Zhao, Haisen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-387b1c44a392124bd8f1d61d28daff953e0ee8a3dd9991ada2584434d80bc6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphous magnetic materials</topic><topic>Coils</topic><topic>Couplers</topic><topic>Efficiency</topic><topic>Ferrite core</topic><topic>Ferrites</topic><topic>Ferromagnetic materials</topic><topic>finite element analysis (FEA)</topic><topic>Finite element method</topic><topic>inductive power transfer (IPT)</topic><topic>iron losses</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetic induction</topic><topic>Magnetic materials</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Misalignment</topic><topic>misalignment tolerance</topic><topic>nanocrystalline core</topic><topic>Nanocrystals</topic><topic>Paramagnetism</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Power transfer</topic><topic>Transmission efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jinping</creatorcontrib><creatorcontrib>Wang, Yubo</creatorcontrib><creatorcontrib>Li, Liangchen</creatorcontrib><creatorcontrib>Chen, Pengfei</creatorcontrib><creatorcontrib>Chen, Jiaqi</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Cheng, Shaoyu</creatorcontrib><creatorcontrib>Yang, Fuyao</creatorcontrib><creatorcontrib>Xu, Guorui</creatorcontrib><creatorcontrib>Eldeeb, Hassan H.</creatorcontrib><creatorcontrib>Zhao, Haisen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Jinping</au><au>Wang, Yubo</au><au>Li, Liangchen</au><au>Chen, Pengfei</au><au>Chen, Jiaqi</au><au>Zhang, Xueying</au><au>Cheng, Shaoyu</au><au>Yang, Fuyao</au><au>Xu, Guorui</au><au>Eldeeb, Hassan H.</au><au>Zhao, Haisen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2023-11</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>7848</spage><epage>7857</epage><pages>7848-7857</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>For an inductive power transfer (IPT) system, ferromagnetic materials such as ferrite and nanocrystalline are generally adopted to enhance the coupling and misalignment tolerance between the primary and secondary coils. However, it may decrease the transmission efficiency of IPT system due to the different magnetization and loss characteristics of ferromagnetic materials. Therefore, it is necessary to investigate material performance accurately under the real scenario of high frequency supply. In this study, a mathematical model of the IPT system is firstly established and a new test method combining 3-D finite element analysis (FEA) for magnetization and loss characteristics of ferromagnetic materials in IPT system is proposed and the loss variations of different ferromagnetic materials are also revealed. With the measured magnetization and loss data, misalignment tolerance of magnetic coupler with different ferromagnetic materials is investigated by 3-D FEA. It is found that, when the magnetic field conforms to the paramagnetism of the magnetic material, misalignment tolerance can be improved effectively and the higher efficiency of magnetic coupler can be reached under misalignment conditions. Experimental validation is performed on a 1.2-kW coupler prototype under 200-mm misalignment between primary and secondary coils. With the ferrite and nanocrystalline cores of horizontal and vertical laminations, efficiency of magnetic coupler decreases by 0.457%, 1.392% and 1.352%, respectively, and misalignment tolerance of coupler can be improved effectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2023.3310970</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5571-9034</orcidid><orcidid>https://orcid.org/0009-0006-5698-5103</orcidid><orcidid>https://orcid.org/0000-0003-3178-2490</orcidid><orcidid>https://orcid.org/0009-0001-5158-5980</orcidid><orcidid>https://orcid.org/0009-0001-1998-6186</orcidid><orcidid>https://orcid.org/0009-0001-9316-7787</orcidid><orcidid>https://orcid.org/0000-0001-6808-4843</orcidid><orcidid>https://orcid.org/0000-0002-4981-940X</orcidid><orcidid>https://orcid.org/0009-0003-6329-0033</orcidid><orcidid>https://orcid.org/0009-0005-8942-345X</orcidid><orcidid>https://orcid.org/0009-0004-8439-2079</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2023-11, Vol.59 (6), p.7848-7857
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_10236523
source IEEE Electronic Library (IEL)
subjects Amorphous magnetic materials
Coils
Couplers
Efficiency
Ferrite core
Ferrites
Ferromagnetic materials
finite element analysis (FEA)
Finite element method
inductive power transfer (IPT)
iron losses
Magnetic cores
Magnetic flux
Magnetic induction
Magnetic materials
Magnetization
Mathematical analysis
Misalignment
misalignment tolerance
nanocrystalline core
Nanocrystals
Paramagnetism
Perpendicular magnetic anisotropy
Power transfer
Transmission efficiency
title Misalignment Tolerance of Inductive Power Transfer Coupler With Low Loss and High Magnetic Induction Ferromagnetic Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Misalignment%20Tolerance%20of%20Inductive%20Power%20Transfer%20Coupler%20With%20Low%20Loss%20and%20High%20Magnetic%20Induction%20Ferromagnetic%20Materials&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Kang,%20Jinping&rft.date=2023-11&rft.volume=59&rft.issue=6&rft.spage=7848&rft.epage=7857&rft.pages=7848-7857&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2023.3310970&rft_dat=%3Cproquest_RIE%3E2892368665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892368665&rft_id=info:pmid/&rft_ieee_id=10236523&rfr_iscdi=true