B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition
Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interacti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Guo, Fangtai Jin, Tianlei Zhu, Shiqiang Xi, Xiangming Wang, Wen Meng, Qiwei Song, Wei Zhu, Jiakai |
description | Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available here 1 . |
doi_str_mv | 10.1109/TIP.2023.3308750 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10235872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10235872</ieee_id><sourcerecordid>2859603683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ef7fc8f46df06abd01a70f84d7bda5c08fb1b7e055c1762caf6a32aab49318c13</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRiMEEqWwMzBEYmFxOduxnbC1EaVIrUBQ5shxbOQqjYOdDPx7EtoBMd2n0_tOuhdF1xhmGEN2v31-nREgdEYppILBSTTBWYIRQEJOhwxMIIGT7Dy6CGEHgBOG-SSyC5Kj-XLzEC8sqqzXqrOukXWcO7TV-9b5IcuminPvQkDvrezssJl3nW5GMl72YRwbV-k6Ns7Hq34vm3j-eyd-08p9NnbMl9GZkXXQV8c5jT6Wj9t8hdYvT8_5fI0UJaxD2gijUpPwygCXZQVYCjBpUomykkxBakpcCg2MKSw4UdJwSYmUZZJRnCpMp9Hd4W7r3VevQ1fsbVC6rmWjXR8KkrKMA-UpHdDbf-jO9X74fqQ44VRklA0UHCg1KvDaFK23e-m_CwzF6L4Y3Bej--LofqjcHCpWa_0HJ5SlgtAfpYl_Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862637935</pqid></control><display><type>article</type><title>B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Fangtai ; Jin, Tianlei ; Zhu, Shiqiang ; Xi, Xiangming ; Wang, Wen ; Meng, Qiwei ; Song, Wei ; Zhu, Jiakai</creator><creatorcontrib>Guo, Fangtai ; Jin, Tianlei ; Zhu, Shiqiang ; Xi, Xiangming ; Wang, Wen ; Meng, Qiwei ; Song, Wei ; Zhu, Jiakai</creatorcontrib><description>Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available here 1 .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3308750</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; B2C-AFM ; Color imagery ; fusion model ; homogeneous modalities ; Human action recognition ; Human activity recognition ; limb flow fields ; Optical flow (image analysis)</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ef7fc8f46df06abd01a70f84d7bda5c08fb1b7e055c1762caf6a32aab49318c13</citedby><cites>FETCH-LOGICAL-c325t-ef7fc8f46df06abd01a70f84d7bda5c08fb1b7e055c1762caf6a32aab49318c13</cites><orcidid>0000-0003-2786-8144 ; 0000-0002-4749-9908 ; 0000-0002-0828-7486 ; 0000-0002-5687-4001 ; 0000-0001-8682-7946 ; 0009-0009-1644-2341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10235872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10235872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Fangtai</creatorcontrib><creatorcontrib>Jin, Tianlei</creatorcontrib><creatorcontrib>Zhu, Shiqiang</creatorcontrib><creatorcontrib>Xi, Xiangming</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Meng, Qiwei</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhu, Jiakai</creatorcontrib><title>B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available here 1 .</description><subject>Ablation</subject><subject>B2C-AFM</subject><subject>Color imagery</subject><subject>fusion model</subject><subject>homogeneous modalities</subject><subject>Human action recognition</subject><subject>Human activity recognition</subject><subject>limb flow fields</subject><subject>Optical flow (image analysis)</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRiMEEqWwMzBEYmFxOduxnbC1EaVIrUBQ5shxbOQqjYOdDPx7EtoBMd2n0_tOuhdF1xhmGEN2v31-nREgdEYppILBSTTBWYIRQEJOhwxMIIGT7Dy6CGEHgBOG-SSyC5Kj-XLzEC8sqqzXqrOukXWcO7TV-9b5IcuminPvQkDvrezssJl3nW5GMl72YRwbV-k6Ns7Hq34vm3j-eyd-08p9NnbMl9GZkXXQV8c5jT6Wj9t8hdYvT8_5fI0UJaxD2gijUpPwygCXZQVYCjBpUomykkxBakpcCg2MKSw4UdJwSYmUZZJRnCpMp9Hd4W7r3VevQ1fsbVC6rmWjXR8KkrKMA-UpHdDbf-jO9X74fqQ44VRklA0UHCg1KvDaFK23e-m_CwzF6L4Y3Bej--LofqjcHCpWa_0HJ5SlgtAfpYl_Ww</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Guo, Fangtai</creator><creator>Jin, Tianlei</creator><creator>Zhu, Shiqiang</creator><creator>Xi, Xiangming</creator><creator>Wang, Wen</creator><creator>Meng, Qiwei</creator><creator>Song, Wei</creator><creator>Zhu, Jiakai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2786-8144</orcidid><orcidid>https://orcid.org/0000-0002-4749-9908</orcidid><orcidid>https://orcid.org/0000-0002-0828-7486</orcidid><orcidid>https://orcid.org/0000-0002-5687-4001</orcidid><orcidid>https://orcid.org/0000-0001-8682-7946</orcidid><orcidid>https://orcid.org/0009-0009-1644-2341</orcidid></search><sort><creationdate>20230101</creationdate><title>B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition</title><author>Guo, Fangtai ; Jin, Tianlei ; Zhu, Shiqiang ; Xi, Xiangming ; Wang, Wen ; Meng, Qiwei ; Song, Wei ; Zhu, Jiakai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ef7fc8f46df06abd01a70f84d7bda5c08fb1b7e055c1762caf6a32aab49318c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>B2C-AFM</topic><topic>Color imagery</topic><topic>fusion model</topic><topic>homogeneous modalities</topic><topic>Human action recognition</topic><topic>Human activity recognition</topic><topic>limb flow fields</topic><topic>Optical flow (image analysis)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Fangtai</creatorcontrib><creatorcontrib>Jin, Tianlei</creatorcontrib><creatorcontrib>Zhu, Shiqiang</creatorcontrib><creatorcontrib>Xi, Xiangming</creatorcontrib><creatorcontrib>Wang, Wen</creatorcontrib><creatorcontrib>Meng, Qiwei</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhu, Jiakai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Fangtai</au><au>Jin, Tianlei</au><au>Zhu, Shiqiang</au><au>Xi, Xiangming</au><au>Wang, Wen</au><au>Meng, Qiwei</au><au>Song, Wei</au><au>Zhu, Jiakai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available here 1 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2023.3308750</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2786-8144</orcidid><orcidid>https://orcid.org/0000-0002-4749-9908</orcidid><orcidid>https://orcid.org/0000-0002-0828-7486</orcidid><orcidid>https://orcid.org/0000-0002-5687-4001</orcidid><orcidid>https://orcid.org/0000-0001-8682-7946</orcidid><orcidid>https://orcid.org/0009-0009-1644-2341</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-01, Vol.32, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_10235872 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation B2C-AFM Color imagery fusion model homogeneous modalities Human action recognition Human activity recognition limb flow fields Optical flow (image analysis) |
title | B2C-AFM: Bi-directional Co-Temporal and Cross-Spatial Attention Fusion Model for Human Action Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=B2C-AFM:%20Bi-directional%20Co-Temporal%20and%20Cross-Spatial%20Attention%20Fusion%20Model%20for%20Human%20Action%20Recognition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Guo,%20Fangtai&rft.date=2023-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3308750&rft_dat=%3Cproquest_RIE%3E2859603683%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862637935&rft_id=info:pmid/&rft_ieee_id=10235872&rfr_iscdi=true |