Online and Robust Intermittent Motion Planning in Dynamic and Changing Environments
In this article, we propose RRT-Q ^{\textrm{\,X}}_{\infty} , an online and intermittent kinodynamic motion planning framework for dynamic environments with unknown robot dynamics and unknown disturbances. We leverage RRT ^{\textrm{\,X}} for global path planning and rapid replanning to produce waypo...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-08, Vol.PP, p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we propose RRT-Q ^{\textrm{\,X}}_{\infty} , an online and intermittent kinodynamic motion planning framework for dynamic environments with unknown robot dynamics and unknown disturbances. We leverage RRT ^{\textrm{\,X}} for global path planning and rapid replanning to produce waypoints as a sequence of boundary-value problems (BVPs). For each BVP, we formulate a finite-horizon, continuous-time zero-sum game, where the control input is the minimizer, and the worst case disturbance is the maximizer. We propose a robust intermittent Q-learning controller for waypoint navigation with completely unknown system dynamics, external disturbances, and intermittent control updates. We execute a relaxed persistence of excitation technique to guarantee that the Q-learning controller converges to the optimal controller. We provide rigorous Lyapunov-based proofs to guarantee the closed-loop stability of the equilibrium point. The effectiveness of the proposed RRT-Q ^{\textrm{\,X}}_{\infty} is illustrated with Monte Carlo numerical experiments in numerous dynamic and changing environments. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2023.3303811 |