Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations

The Unscented Transform (UT) approximates the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The UT works by constructing a set of points, referred to as sigma points, which has the same known statistics, e.g., first and second and possibly higher mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Julier, S.J., Uhlmann, J.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892 vol.2
container_issue
container_start_page 887
container_title
container_volume 2
creator Julier, S.J.
Uhlmann, J.K.
description The Unscented Transform (UT) approximates the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The UT works by constructing a set of points, referred to as sigma points, which has the same known statistics, e.g., first and second and possibly higher moments, as the given estimate. The given nonlinear transformation Is applied to the set, and the unscented estimate is obtained by computing the statistics of the transformed set of sigma points. For example, the mean and covariance of the transformed set approximates the nonlinear transformation of the original mean and covariance estimate. The computational efficiency of the UT therefore depends on the number of sigma points required to capture the known statistics of the original estimate. In this paper we examine methods for minimizing the number of sigma points for real-time control, estimation, and filtering applications. We demonstrate results in a 3D localization example.
doi_str_mv 10.1109/ACC.2002.1023128
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1023128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1023128</ieee_id><sourcerecordid>15715582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7ae1006669b336b91f8789ee90c07f83eda33dd2d6968d154e2f70cf435733113</originalsourceid><addsrcrecordid>eNpFkMtLAzEYxIMPsK3eBS-5eNz6JenmcSyLLygIoueSJl_alG12SbaC_72LFTzNYX4zDEPILYM5Y2Aelk0z5wB8zoALxvUZmXChdFVryc7JFJQGobjRcEEmoBaiYpKZKzItZQ_AjJEwIft39EeHnpa4PVjadzENNMR2wFxo6DIddkj73PV2a4fYJdoFekCbCrXJU9d92RxtclhGMHfH7Y6mLrUxoR2jeeTGjsNvslyTy2Dbgjd_OiOfT48fzUu1ent-bZarynHDh0pZZABSSrMRQm4MC1ppg2jAgQpaoLdCeM-9NFJ7Vi-QBwUuLESthGBMzMj9qbe3xdk2jCtcLOs-x4PN32tWK1bXmo_c3YmLiPhvn74UPz6qZvg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Julier, S.J. ; Uhlmann, J.K.</creator><creatorcontrib>Julier, S.J. ; Uhlmann, J.K.</creatorcontrib><description>The Unscented Transform (UT) approximates the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The UT works by constructing a set of points, referred to as sigma points, which has the same known statistics, e.g., first and second and possibly higher moments, as the given estimate. The given nonlinear transformation Is applied to the set, and the unscented estimate is obtained by computing the statistics of the transformed set of sigma points. For example, the mean and covariance of the transformed set approximates the nonlinear transformation of the original mean and covariance estimate. The computational efficiency of the UT therefore depends on the number of sigma points required to capture the known statistics of the original estimate. In this paper we examine methods for minimizing the number of sigma points for real-time control, estimation, and filtering applications. We demonstrate results in a 3D localization example.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 0780372980</identifier><identifier>ISBN: 9780780372986</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.1109/ACC.2002.1023128</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Computational efficiency ; Computer science; control theory; systems ; Control theory. Systems ; Degradation ; Exact sciences and technology ; Filtering ; Jacobian matrices ; Linear approximation ; Monte Carlo methods ; Particle filters ; Sampling methods ; Statistical distributions ; Statistics</subject><ispartof>Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), 2002, Vol.2, p.887-892 vol.2</ispartof><rights>2004 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7ae1006669b336b91f8789ee90c07f83eda33dd2d6968d154e2f70cf435733113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1023128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4040,4041,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1023128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15715582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Julier, S.J.</creatorcontrib><creatorcontrib>Uhlmann, J.K.</creatorcontrib><title>Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations</title><title>Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301)</title><addtitle>ACC</addtitle><description>The Unscented Transform (UT) approximates the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The UT works by constructing a set of points, referred to as sigma points, which has the same known statistics, e.g., first and second and possibly higher moments, as the given estimate. The given nonlinear transformation Is applied to the set, and the unscented estimate is obtained by computing the statistics of the transformed set of sigma points. For example, the mean and covariance of the transformed set approximates the nonlinear transformation of the original mean and covariance estimate. The computational efficiency of the UT therefore depends on the number of sigma points required to capture the known statistics of the original estimate. In this paper we examine methods for minimizing the number of sigma points for real-time control, estimation, and filtering applications. We demonstrate results in a 3D localization example.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Jacobian matrices</subject><subject>Linear approximation</subject><subject>Monte Carlo methods</subject><subject>Particle filters</subject><subject>Sampling methods</subject><subject>Statistical distributions</subject><subject>Statistics</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>0780372980</isbn><isbn>9780780372986</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtLAzEYxIMPsK3eBS-5eNz6JenmcSyLLygIoueSJl_alG12SbaC_72LFTzNYX4zDEPILYM5Y2Aelk0z5wB8zoALxvUZmXChdFVryc7JFJQGobjRcEEmoBaiYpKZKzItZQ_AjJEwIft39EeHnpa4PVjadzENNMR2wFxo6DIddkj73PV2a4fYJdoFekCbCrXJU9d92RxtclhGMHfH7Y6mLrUxoR2jeeTGjsNvslyTy2Dbgjd_OiOfT48fzUu1ent-bZarynHDh0pZZABSSrMRQm4MC1ppg2jAgQpaoLdCeM-9NFJ7Vi-QBwUuLESthGBMzMj9qbe3xdk2jCtcLOs-x4PN32tWK1bXmo_c3YmLiPhvn74UPz6qZvg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Julier, S.J.</creator><creator>Uhlmann, J.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations</title><author>Julier, S.J. ; Uhlmann, J.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7ae1006669b336b91f8789ee90c07f83eda33dd2d6968d154e2f70cf435733113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Jacobian matrices</topic><topic>Linear approximation</topic><topic>Monte Carlo methods</topic><topic>Particle filters</topic><topic>Sampling methods</topic><topic>Statistical distributions</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Julier, S.J.</creatorcontrib><creatorcontrib>Uhlmann, J.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Julier, S.J.</au><au>Uhlmann, J.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations</atitle><btitle>Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301)</btitle><stitle>ACC</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>887</spage><epage>892 vol.2</epage><pages>887-892 vol.2</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>0780372980</isbn><isbn>9780780372986</isbn><abstract>The Unscented Transform (UT) approximates the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The UT works by constructing a set of points, referred to as sigma points, which has the same known statistics, e.g., first and second and possibly higher moments, as the given estimate. The given nonlinear transformation Is applied to the set, and the unscented estimate is obtained by computing the statistics of the transformed set of sigma points. For example, the mean and covariance of the transformed set approximates the nonlinear transformation of the original mean and covariance estimate. The computational efficiency of the UT therefore depends on the number of sigma points required to capture the known statistics of the original estimate. In this paper we examine methods for minimizing the number of sigma points for real-time control, estimation, and filtering applications. We demonstrate results in a 3D localization example.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ACC.2002.1023128</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), 2002, Vol.2, p.887-892 vol.2
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_1023128
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Computational efficiency
Computer science
control theory
systems
Control theory. Systems
Degradation
Exact sciences and technology
Filtering
Jacobian matrices
Linear approximation
Monte Carlo methods
Particle filters
Sampling methods
Statistical distributions
Statistics
title Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reduced%20sigma%20point%20filters%20for%20the%20propagation%20of%20means%20and%20covariances%20through%20nonlinear%20transformations&rft.btitle=Proceedings%20of%20the%202002%20American%20Control%20Conference%20(IEEE%20Cat.%20No.CH37301)&rft.au=Julier,%20S.J.&rft.date=2002&rft.volume=2&rft.spage=887&rft.epage=892%20vol.2&rft.pages=887-892%20vol.2&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=0780372980&rft.isbn_list=9780780372986&rft_id=info:doi/10.1109/ACC.2002.1023128&rft_dat=%3Cpascalfrancis_6IE%3E15715582%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1023128&rfr_iscdi=true