AFibri-Net: A Lightweight Convolution Neural Network Based Atrial Fibrillation Detector

By considering limited resource-constraints of medical devices and advanced deep learning networks, in this paper, we explore a lightweight convolutional neural network (CNN) based AFibri event detector by finding suitable hyperparameters and activation function with best trade-off between the detec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2023-12, Vol.70 (12), p.1-13
Hauptverfasser: Phukan, Nabasmita, Manikandan, M. Sabarimalai, Pachori, Ram Bilas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 12
container_start_page 1
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 70
creator Phukan, Nabasmita
Manikandan, M. Sabarimalai
Pachori, Ram Bilas
description By considering limited resource-constraints of medical devices and advanced deep learning networks, in this paper, we explore a lightweight convolutional neural network (CNN) based AFibri event detector by finding suitable hyperparameters and activation function with best trade-off between the detection accuracy and model size (or computational time). This study presents extensive evaluation results of CNN-AFibri event detection methods that are obtained for different combination of model parameters: number of convolutional layers (CLs of 3, 4, and 5), number of filters (8, 16, 32, 64 and 128), activation functions (including the rectified linear unit (ReLU), leakyReLU (LReLU), exponential linear unit (ELU)), and kernel sizes ( 3 \times 1~ , 4 \times 1 ). In addition to different CNN-AFibri models, we validate their performances under different ECG segment duration of 5, 10 and 30 seconds. On the standard databases and unseen databases, the CNN-AFibri model with the CLs of 5, ELU function and kernel size of 4 \times 1 had a highest accuracy of 99.97% (specificity of 99.98% and sensitivity of 99.95%) for 5 second ECG segments as compared to the performances of 54 CNN-AFibri models reported in this paper and other existing deep learning based methods on the same validation databases. Real-time implementation of the best CNN based method with a model size of 3.14 Megabyte is demonstrated using the Raspberry Pi computing platform with Broadcom BCM2711, 1.5 GHz Cortex-A72 quad-core CPU with 8 GB RAM. Results demonstrated that the average processing times are less than 3 ms and 11 ms for processing 5 s and 30 s ECG segments, respectively with an accuracy reduction of less than 1% as compared to the same model tested on the personal computer with Intel(R) Xeon(R) W-2133 3.60 GHz Processor with 6 core and 128 GB RAM.
doi_str_mv 10.1109/TCSI.2023.3303936
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10229937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10229937</ieee_id><sourcerecordid>2904459317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-f5b5a402636dc97928f0e5f4b331c808bebe15260f766a6e8c8e058a457ff2a73</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAEgcInFO8E_s2NxCoFCpKgeKOFpOuoaUUBfHoeLtSdoeuOysVjO72g-hS4ITQrC6WRQv04RiyhLGMFNMHKER4VzGWGJxPPSpiiWj8hSdte0KY6owIyP0lk_q0tfxHMJtlEez-v0jbGGoUeHWP67pQu3W0Rw6b5pewtb5z-jOtLCM8uDrfrhb0DRmZ7yHAFVw_hydWNO0cHHQMXqdPCyKp3j2_Dgt8llcsZSG2PKSmxRTwcSyUpmi0mLgNi0ZI5XEsoQSCKcC20wII0BWEjCXJuWZtdRkbIyu93s33n130Aa9cp1f9yd1_2GacsXI4CJ7V-Vd23qweuPrL-N_NcF64KcHfnrgpw_8-szVPlMDwD8_pUqxjP0BPrlrig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904459317</pqid></control><display><type>article</type><title>AFibri-Net: A Lightweight Convolution Neural Network Based Atrial Fibrillation Detector</title><source>IEEE Electronic Library (IEL)</source><creator>Phukan, Nabasmita ; Manikandan, M. Sabarimalai ; Pachori, Ram Bilas</creator><creatorcontrib>Phukan, Nabasmita ; Manikandan, M. Sabarimalai ; Pachori, Ram Bilas</creatorcontrib><description><![CDATA[By considering limited resource-constraints of medical devices and advanced deep learning networks, in this paper, we explore a lightweight convolutional neural network (CNN) based AFibri event detector by finding suitable hyperparameters and activation function with best trade-off between the detection accuracy and model size (or computational time). This study presents extensive evaluation results of CNN-AFibri event detection methods that are obtained for different combination of model parameters: number of convolutional layers (CLs of 3, 4, and 5), number of filters (8, 16, 32, 64 and 128), activation functions (including the rectified linear unit (ReLU), leakyReLU (LReLU), exponential linear unit (ELU)), and kernel sizes (<inline-formula> <tex-math notation="LaTeX">3 \times 1~</tex-math> </inline-formula>, <inline-formula> <tex-math notation="LaTeX"> 4 \times 1</tex-math> </inline-formula>). In addition to different CNN-AFibri models, we validate their performances under different ECG segment duration of 5, 10 and 30 seconds. On the standard databases and unseen databases, the CNN-AFibri model with the CLs of 5, ELU function and kernel size of <inline-formula> <tex-math notation="LaTeX"> 4 \times 1</tex-math> </inline-formula> had a highest accuracy of 99.97% (specificity of 99.98% and sensitivity of 99.95%) for 5 second ECG segments as compared to the performances of 54 CNN-AFibri models reported in this paper and other existing deep learning based methods on the same validation databases. Real-time implementation of the best CNN based method with a model size of 3.14 Megabyte is demonstrated using the Raspberry Pi computing platform with Broadcom BCM2711, 1.5 GHz Cortex-A72 quad-core CPU with 8 GB RAM. Results demonstrated that the average processing times are less than 3 ms and 11 ms for processing 5 s and 30 s ECG segments, respectively with an accuracy reduction of less than 1% as compared to the same model tested on the personal computer with Intel(R) Xeon(R) W-2133 3.60 GHz Processor with 6 core and 128 GB RAM.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2023.3303936</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Atrial fibrillation ; cardiac arrhythmia recognition ; Computational modeling ; Computing time ; convolutional neural network ; Convolutional neural networks ; Deep learning ; Detectors ; electrocardiogram ; Electrocardiography ; Feature extraction ; Kernels ; Lightweight ; Load modeling ; Machine learning ; Microprocessors ; Model accuracy ; Neural networks ; Personal computers ; Segments</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2023-12, Vol.70 (12), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-f5b5a402636dc97928f0e5f4b331c808bebe15260f766a6e8c8e058a457ff2a73</citedby><cites>FETCH-LOGICAL-c342t-f5b5a402636dc97928f0e5f4b331c808bebe15260f766a6e8c8e058a457ff2a73</cites><orcidid>0000-0001-6878-4911 ; 0000-0002-6061-4309 ; 0000-0002-3973-0540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10229937$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10229937$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Phukan, Nabasmita</creatorcontrib><creatorcontrib>Manikandan, M. Sabarimalai</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><title>AFibri-Net: A Lightweight Convolution Neural Network Based Atrial Fibrillation Detector</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[By considering limited resource-constraints of medical devices and advanced deep learning networks, in this paper, we explore a lightweight convolutional neural network (CNN) based AFibri event detector by finding suitable hyperparameters and activation function with best trade-off between the detection accuracy and model size (or computational time). This study presents extensive evaluation results of CNN-AFibri event detection methods that are obtained for different combination of model parameters: number of convolutional layers (CLs of 3, 4, and 5), number of filters (8, 16, 32, 64 and 128), activation functions (including the rectified linear unit (ReLU), leakyReLU (LReLU), exponential linear unit (ELU)), and kernel sizes (<inline-formula> <tex-math notation="LaTeX">3 \times 1~</tex-math> </inline-formula>, <inline-formula> <tex-math notation="LaTeX"> 4 \times 1</tex-math> </inline-formula>). In addition to different CNN-AFibri models, we validate their performances under different ECG segment duration of 5, 10 and 30 seconds. On the standard databases and unseen databases, the CNN-AFibri model with the CLs of 5, ELU function and kernel size of <inline-formula> <tex-math notation="LaTeX"> 4 \times 1</tex-math> </inline-formula> had a highest accuracy of 99.97% (specificity of 99.98% and sensitivity of 99.95%) for 5 second ECG segments as compared to the performances of 54 CNN-AFibri models reported in this paper and other existing deep learning based methods on the same validation databases. Real-time implementation of the best CNN based method with a model size of 3.14 Megabyte is demonstrated using the Raspberry Pi computing platform with Broadcom BCM2711, 1.5 GHz Cortex-A72 quad-core CPU with 8 GB RAM. Results demonstrated that the average processing times are less than 3 ms and 11 ms for processing 5 s and 30 s ECG segments, respectively with an accuracy reduction of less than 1% as compared to the same model tested on the personal computer with Intel(R) Xeon(R) W-2133 3.60 GHz Processor with 6 core and 128 GB RAM.]]></description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Atrial fibrillation</subject><subject>cardiac arrhythmia recognition</subject><subject>Computational modeling</subject><subject>Computing time</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>electrocardiogram</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Kernels</subject><subject>Lightweight</subject><subject>Load modeling</subject><subject>Machine learning</subject><subject>Microprocessors</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Personal computers</subject><subject>Segments</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAEgcInFO8E_s2NxCoFCpKgeKOFpOuoaUUBfHoeLtSdoeuOysVjO72g-hS4ITQrC6WRQv04RiyhLGMFNMHKER4VzGWGJxPPSpiiWj8hSdte0KY6owIyP0lk_q0tfxHMJtlEez-v0jbGGoUeHWP67pQu3W0Rw6b5pewtb5z-jOtLCM8uDrfrhb0DRmZ7yHAFVw_hydWNO0cHHQMXqdPCyKp3j2_Dgt8llcsZSG2PKSmxRTwcSyUpmi0mLgNi0ZI5XEsoQSCKcC20wII0BWEjCXJuWZtdRkbIyu93s33n130Aa9cp1f9yd1_2GacsXI4CJ7V-Vd23qweuPrL-N_NcF64KcHfnrgpw_8-szVPlMDwD8_pUqxjP0BPrlrig</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Phukan, Nabasmita</creator><creator>Manikandan, M. Sabarimalai</creator><creator>Pachori, Ram Bilas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6878-4911</orcidid><orcidid>https://orcid.org/0000-0002-6061-4309</orcidid><orcidid>https://orcid.org/0000-0002-3973-0540</orcidid></search><sort><creationdate>20231201</creationdate><title>AFibri-Net: A Lightweight Convolution Neural Network Based Atrial Fibrillation Detector</title><author>Phukan, Nabasmita ; Manikandan, M. Sabarimalai ; Pachori, Ram Bilas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-f5b5a402636dc97928f0e5f4b331c808bebe15260f766a6e8c8e058a457ff2a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Atrial fibrillation</topic><topic>cardiac arrhythmia recognition</topic><topic>Computational modeling</topic><topic>Computing time</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>electrocardiogram</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Kernels</topic><topic>Lightweight</topic><topic>Load modeling</topic><topic>Machine learning</topic><topic>Microprocessors</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Personal computers</topic><topic>Segments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phukan, Nabasmita</creatorcontrib><creatorcontrib>Manikandan, M. Sabarimalai</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Phukan, Nabasmita</au><au>Manikandan, M. Sabarimalai</au><au>Pachori, Ram Bilas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFibri-Net: A Lightweight Convolution Neural Network Based Atrial Fibrillation Detector</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>70</volume><issue>12</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[By considering limited resource-constraints of medical devices and advanced deep learning networks, in this paper, we explore a lightweight convolutional neural network (CNN) based AFibri event detector by finding suitable hyperparameters and activation function with best trade-off between the detection accuracy and model size (or computational time). This study presents extensive evaluation results of CNN-AFibri event detection methods that are obtained for different combination of model parameters: number of convolutional layers (CLs of 3, 4, and 5), number of filters (8, 16, 32, 64 and 128), activation functions (including the rectified linear unit (ReLU), leakyReLU (LReLU), exponential linear unit (ELU)), and kernel sizes (<inline-formula> <tex-math notation="LaTeX">3 \times 1~</tex-math> </inline-formula>, <inline-formula> <tex-math notation="LaTeX"> 4 \times 1</tex-math> </inline-formula>). In addition to different CNN-AFibri models, we validate their performances under different ECG segment duration of 5, 10 and 30 seconds. On the standard databases and unseen databases, the CNN-AFibri model with the CLs of 5, ELU function and kernel size of <inline-formula> <tex-math notation="LaTeX"> 4 \times 1</tex-math> </inline-formula> had a highest accuracy of 99.97% (specificity of 99.98% and sensitivity of 99.95%) for 5 second ECG segments as compared to the performances of 54 CNN-AFibri models reported in this paper and other existing deep learning based methods on the same validation databases. Real-time implementation of the best CNN based method with a model size of 3.14 Megabyte is demonstrated using the Raspberry Pi computing platform with Broadcom BCM2711, 1.5 GHz Cortex-A72 quad-core CPU with 8 GB RAM. Results demonstrated that the average processing times are less than 3 ms and 11 ms for processing 5 s and 30 s ECG segments, respectively with an accuracy reduction of less than 1% as compared to the same model tested on the personal computer with Intel(R) Xeon(R) W-2133 3.60 GHz Processor with 6 core and 128 GB RAM.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2023.3303936</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6878-4911</orcidid><orcidid>https://orcid.org/0000-0002-6061-4309</orcidid><orcidid>https://orcid.org/0000-0002-3973-0540</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2023-12, Vol.70 (12), p.1-13
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_10229937
source IEEE Electronic Library (IEL)
subjects Accuracy
Artificial neural networks
Atrial fibrillation
cardiac arrhythmia recognition
Computational modeling
Computing time
convolutional neural network
Convolutional neural networks
Deep learning
Detectors
electrocardiogram
Electrocardiography
Feature extraction
Kernels
Lightweight
Load modeling
Machine learning
Microprocessors
Model accuracy
Neural networks
Personal computers
Segments
title AFibri-Net: A Lightweight Convolution Neural Network Based Atrial Fibrillation Detector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFibri-Net:%20A%20Lightweight%20Convolution%20Neural%20Network%20Based%20Atrial%20Fibrillation%20Detector&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Phukan,%20Nabasmita&rft.date=2023-12-01&rft.volume=70&rft.issue=12&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2023.3303936&rft_dat=%3Cproquest_RIE%3E2904459317%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904459317&rft_id=info:pmid/&rft_ieee_id=10229937&rfr_iscdi=true