Work function based field effect devices for gas sensing

In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eisele, I., Burgmair, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue
container_start_page 285
container_title
container_volume
creator Eisele, I.
Burgmair, M.
description In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques.
doi_str_mv 10.1109/COMMAD.2000.1022944
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1022944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1022944</ieee_id><sourcerecordid>1022944</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-51997f363d667ecd18333b2e5a6de2761df0212066923fb58aaa0bf8a893bad43</originalsourceid><addsrcrecordid>eNotj91Kw0AUhBdEqNQ8QW_2BVLP_u9elvgLLb1Relk22XPKak0kGwXf3oCFgYHhY5hhbCVgLQSEu2a_223u1xJgDkDKoPUVq4LzMEtZG7xZsKqU9xkAbbR14Yb5wzB-cPruuykPPW9jwcQp4zlxJMJu4gl_coeF0zDyUyy8YF9yf7pl1xTPBauLL9nb48Nr81xv908vzWZbZ-HMVBsRgiNlVbLWYZeEV0q1Ek20CaWzIhFIIWGeJxW1xscYoSUffVBtTFot2eq_NyPi8WvMn3H8PV7-qT8mW0Vb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Work function based field effect devices for gas sensing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eisele, I. ; Burgmair, M.</creator><creatorcontrib>Eisele, I. ; Burgmair, M.</creatorcontrib><description>In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques.</description><identifier>ISBN: 9780780366985</identifier><identifier>ISBN: 0780366980</identifier><identifier>DOI: 10.1109/COMMAD.2000.1022944</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitance ; Chemical sensors ; Conductivity measurement ; Energy consumption ; Energy measurement ; FETs ; Insulation ; Metal-insulator structures ; Microsensors ; Temperature sensors</subject><ispartof>COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices, 2000, p.285-291</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1022944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1022944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eisele, I.</creatorcontrib><creatorcontrib>Burgmair, M.</creatorcontrib><title>Work function based field effect devices for gas sensing</title><title>COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices</title><addtitle>COMMAD</addtitle><description>In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques.</description><subject>Capacitance</subject><subject>Chemical sensors</subject><subject>Conductivity measurement</subject><subject>Energy consumption</subject><subject>Energy measurement</subject><subject>FETs</subject><subject>Insulation</subject><subject>Metal-insulator structures</subject><subject>Microsensors</subject><subject>Temperature sensors</subject><isbn>9780780366985</isbn><isbn>0780366980</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91Kw0AUhBdEqNQ8QW_2BVLP_u9elvgLLb1Relk22XPKak0kGwXf3oCFgYHhY5hhbCVgLQSEu2a_223u1xJgDkDKoPUVq4LzMEtZG7xZsKqU9xkAbbR14Yb5wzB-cPruuykPPW9jwcQp4zlxJMJu4gl_coeF0zDyUyy8YF9yf7pl1xTPBauLL9nb48Nr81xv908vzWZbZ-HMVBsRgiNlVbLWYZeEV0q1Ek20CaWzIhFIIWGeJxW1xscYoSUffVBtTFot2eq_NyPi8WvMn3H8PV7-qT8mW0Vb</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Eisele, I.</creator><creator>Burgmair, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Work function based field effect devices for gas sensing</title><author>Eisele, I. ; Burgmair, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-51997f363d667ecd18333b2e5a6de2761df0212066923fb58aaa0bf8a893bad43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Capacitance</topic><topic>Chemical sensors</topic><topic>Conductivity measurement</topic><topic>Energy consumption</topic><topic>Energy measurement</topic><topic>FETs</topic><topic>Insulation</topic><topic>Metal-insulator structures</topic><topic>Microsensors</topic><topic>Temperature sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Eisele, I.</creatorcontrib><creatorcontrib>Burgmair, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eisele, I.</au><au>Burgmair, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Work function based field effect devices for gas sensing</atitle><btitle>COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices</btitle><stitle>COMMAD</stitle><date>2000</date><risdate>2000</risdate><spage>285</spage><epage>291</epage><pages>285-291</pages><isbn>9780780366985</isbn><isbn>0780366980</isbn><abstract>In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques.</abstract><pub>IEEE</pub><doi>10.1109/COMMAD.2000.1022944</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780366985
ispartof COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices, 2000, p.285-291
issn
language eng
recordid cdi_ieee_primary_1022944
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Capacitance
Chemical sensors
Conductivity measurement
Energy consumption
Energy measurement
FETs
Insulation
Metal-insulator structures
Microsensors
Temperature sensors
title Work function based field effect devices for gas sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Work%20function%20based%20field%20effect%20devices%20for%20gas%20sensing&rft.btitle=COMMAD%202000%20Proceedings.%20Conference%20on%20Optoelectronic%20and%20Microelectronic%20Materials%20and%20Devices&rft.au=Eisele,%20I.&rft.date=2000&rft.spage=285&rft.epage=291&rft.pages=285-291&rft.isbn=9780780366985&rft.isbn_list=0780366980&rft_id=info:doi/10.1109/COMMAD.2000.1022944&rft_dat=%3Cieee_6IE%3E1022944%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1022944&rfr_iscdi=true