Work function based field effect devices for gas sensing
In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | |
container_volume | |
creator | Eisele, I. Burgmair, M. |
description | In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques. |
doi_str_mv | 10.1109/COMMAD.2000.1022944 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1022944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1022944</ieee_id><sourcerecordid>1022944</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-51997f363d667ecd18333b2e5a6de2761df0212066923fb58aaa0bf8a893bad43</originalsourceid><addsrcrecordid>eNotj91Kw0AUhBdEqNQ8QW_2BVLP_u9elvgLLb1Relk22XPKak0kGwXf3oCFgYHhY5hhbCVgLQSEu2a_223u1xJgDkDKoPUVq4LzMEtZG7xZsKqU9xkAbbR14Yb5wzB-cPruuykPPW9jwcQp4zlxJMJu4gl_coeF0zDyUyy8YF9yf7pl1xTPBauLL9nb48Nr81xv908vzWZbZ-HMVBsRgiNlVbLWYZeEV0q1Ek20CaWzIhFIIWGeJxW1xscYoSUffVBtTFot2eq_NyPi8WvMn3H8PV7-qT8mW0Vb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Work function based field effect devices for gas sensing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eisele, I. ; Burgmair, M.</creator><creatorcontrib>Eisele, I. ; Burgmair, M.</creatorcontrib><description>In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques.</description><identifier>ISBN: 9780780366985</identifier><identifier>ISBN: 0780366980</identifier><identifier>DOI: 10.1109/COMMAD.2000.1022944</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitance ; Chemical sensors ; Conductivity measurement ; Energy consumption ; Energy measurement ; FETs ; Insulation ; Metal-insulator structures ; Microsensors ; Temperature sensors</subject><ispartof>COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices, 2000, p.285-291</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1022944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1022944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eisele, I.</creatorcontrib><creatorcontrib>Burgmair, M.</creatorcontrib><title>Work function based field effect devices for gas sensing</title><title>COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices</title><addtitle>COMMAD</addtitle><description>In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques.</description><subject>Capacitance</subject><subject>Chemical sensors</subject><subject>Conductivity measurement</subject><subject>Energy consumption</subject><subject>Energy measurement</subject><subject>FETs</subject><subject>Insulation</subject><subject>Metal-insulator structures</subject><subject>Microsensors</subject><subject>Temperature sensors</subject><isbn>9780780366985</isbn><isbn>0780366980</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj91Kw0AUhBdEqNQ8QW_2BVLP_u9elvgLLb1Relk22XPKak0kGwXf3oCFgYHhY5hhbCVgLQSEu2a_223u1xJgDkDKoPUVq4LzMEtZG7xZsKqU9xkAbbR14Yb5wzB-cPruuykPPW9jwcQp4zlxJMJu4gl_coeF0zDyUyy8YF9yf7pl1xTPBauLL9nb48Nr81xv908vzWZbZ-HMVBsRgiNlVbLWYZeEV0q1Ek20CaWzIhFIIWGeJxW1xscYoSUffVBtTFot2eq_NyPi8WvMn3H8PV7-qT8mW0Vb</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Eisele, I.</creator><creator>Burgmair, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Work function based field effect devices for gas sensing</title><author>Eisele, I. ; Burgmair, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-51997f363d667ecd18333b2e5a6de2761df0212066923fb58aaa0bf8a893bad43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Capacitance</topic><topic>Chemical sensors</topic><topic>Conductivity measurement</topic><topic>Energy consumption</topic><topic>Energy measurement</topic><topic>FETs</topic><topic>Insulation</topic><topic>Metal-insulator structures</topic><topic>Microsensors</topic><topic>Temperature sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Eisele, I.</creatorcontrib><creatorcontrib>Burgmair, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eisele, I.</au><au>Burgmair, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Work function based field effect devices for gas sensing</atitle><btitle>COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices</btitle><stitle>COMMAD</stitle><date>2000</date><risdate>2000</risdate><spage>285</spage><epage>291</epage><pages>285-291</pages><isbn>9780780366985</isbn><isbn>0780366980</isbn><abstract>In comparison to state of the art microsensors for gas detection, which are mainly based on conductivity measurements, field effect devices exploiting the gas induced shift of a material's work function exhibit several superior features: Low power consumption and sensitivity to a wider range of adsorption mechanisms. A hybrid suspended design of the transistor gate, whose air gap permits the access of gas species to the inner surfaces, enables the incorporation of almost all groups of sensitive materials. The topic of this work is to report about design requirements concerning the silicon device structure, the hybrid gate and the mounting techniques.</abstract><pub>IEEE</pub><doi>10.1109/COMMAD.2000.1022944</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780366985 |
ispartof | COMMAD 2000 Proceedings. Conference on Optoelectronic and Microelectronic Materials and Devices, 2000, p.285-291 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1022944 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Capacitance Chemical sensors Conductivity measurement Energy consumption Energy measurement FETs Insulation Metal-insulator structures Microsensors Temperature sensors |
title | Work function based field effect devices for gas sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Work%20function%20based%20field%20effect%20devices%20for%20gas%20sensing&rft.btitle=COMMAD%202000%20Proceedings.%20Conference%20on%20Optoelectronic%20and%20Microelectronic%20Materials%20and%20Devices&rft.au=Eisele,%20I.&rft.date=2000&rft.spage=285&rft.epage=291&rft.pages=285-291&rft.isbn=9780780366985&rft.isbn_list=0780366980&rft_id=info:doi/10.1109/COMMAD.2000.1022944&rft_dat=%3Cieee_6IE%3E1022944%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1022944&rfr_iscdi=true |