An Anchor-free Pipeline MFL Image Detection Method
To apply deep learning algorithms to magnetic flux leakage (MFL) detection, we propose an anchor-free pipeline MFL image detection method (AFMFLDM) that can simultaneously combine low latency and high accuracy. The algorithm is modified based on CenterNet. The anchor-free target detection algorithm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Han, Fucheng Lang, Xianming Liu, Mingyang |
description | To apply deep learning algorithms to magnetic flux leakage (MFL) detection, we propose an anchor-free pipeline MFL image detection method (AFMFLDM) that can simultaneously combine low latency and high accuracy. The algorithm is modified based on CenterNet. The anchor-free target detection algorithm does not need to design the anchor box size compared to the one-stage and two-stage target detection algorithms, and there is no nonmaximum suppression (NMS) process, which reduces the computational effort. Then, the backbone of this algorithm is selected as a modified PP-LCNet, which replaces the normal convolution with a depthwise separable convolution. It is supplemented with a technique of adjusting parameters to form a network similar to MobileNetV1, which ensures low computational effort and high accuracy compared with the popular feature extraction networks. Finally, a feature fusion module based on receptive field convolution (FFRF) is introduced to improve the detection accuracy. The experimental results show that the accuracy of the algorithm is 95.6% when the intersection over union (IOU) is greater than 0.5, and the inference time is 8.7 ms, which can meet the actual demand of pipeline MFL detection. |
doi_str_mv | 10.1109/TIM.2023.3304688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10227867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10227867</ieee_id><sourcerecordid>2858741510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-8883fe308ace362bedc329d500db84c0c33b6cce950f90a28b391244ce60985c3</originalsourceid><addsrcrecordid>eNpNkD1Pw0AQRE8IJEygp6CwRG2z9-m9MgoELCWCItQn-7wmjhI7nJ2Cfx9HSUE1zZsZ6TH2yCHlHOzLKl-mAoRMpQRlEK9YxLXOEmuMuGYRAMfEKm1u2V3fbwAgMyqLmJi28bT16y4kdSCKv5o9bZuW4uV8Eee74ofiVxrID03Xxksa1l11z27qYtvTwyUn7Hv-tpp9JIvP93w2XSReKD0kiChrkoCFJ2lESZWXwlYaoCpRefBSlsZ7shpqC4XAUloulPJkwKL2csKez7v70P0eqB_cpjuEdrx0AjVmimsOIwVnyoeu7wPVbh-aXRH-HAd3MuNGM-5kxl3MjJWnc6Uhon-4EBmaTB4Biq9csQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858741510</pqid></control><display><type>article</type><title>An Anchor-free Pipeline MFL Image Detection Method</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Fucheng ; Lang, Xianming ; Liu, Mingyang</creator><creatorcontrib>Han, Fucheng ; Lang, Xianming ; Liu, Mingyang</creatorcontrib><description>To apply deep learning algorithms to magnetic flux leakage (MFL) detection, we propose an anchor-free pipeline MFL image detection method (AFMFLDM) that can simultaneously combine low latency and high accuracy. The algorithm is modified based on CenterNet. The anchor-free target detection algorithm does not need to design the anchor box size compared to the one-stage and two-stage target detection algorithms, and there is no nonmaximum suppression (NMS) process, which reduces the computational effort. Then, the backbone of this algorithm is selected as a modified PP-LCNet, which replaces the normal convolution with a depthwise separable convolution. It is supplemented with a technique of adjusting parameters to form a network similar to MobileNetV1, which ensures low computational effort and high accuracy compared with the popular feature extraction networks. Finally, a feature fusion module based on receptive field convolution (FFRF) is introduced to improve the detection accuracy. The experimental results show that the accuracy of the algorithm is 95.6% when the intersection over union (IOU) is greater than 0.5, and the inference time is 8.7 ms, which can meet the actual demand of pipeline MFL detection.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3304688</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; anchor-free ; CenterNet ; Convolution ; Feature extraction ; Image detection ; lightweight network ; Machine learning ; Magnetic flux ; MFL ; Network latency ; object detection ; Target detection</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-8883fe308ace362bedc329d500db84c0c33b6cce950f90a28b391244ce60985c3</cites><orcidid>0000-0003-2853-914X ; 0000-0002-0781-4141 ; 0000-0002-8093-1176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10227867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10227867$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Fucheng</creatorcontrib><creatorcontrib>Lang, Xianming</creatorcontrib><creatorcontrib>Liu, Mingyang</creatorcontrib><title>An Anchor-free Pipeline MFL Image Detection Method</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>To apply deep learning algorithms to magnetic flux leakage (MFL) detection, we propose an anchor-free pipeline MFL image detection method (AFMFLDM) that can simultaneously combine low latency and high accuracy. The algorithm is modified based on CenterNet. The anchor-free target detection algorithm does not need to design the anchor box size compared to the one-stage and two-stage target detection algorithms, and there is no nonmaximum suppression (NMS) process, which reduces the computational effort. Then, the backbone of this algorithm is selected as a modified PP-LCNet, which replaces the normal convolution with a depthwise separable convolution. It is supplemented with a technique of adjusting parameters to form a network similar to MobileNetV1, which ensures low computational effort and high accuracy compared with the popular feature extraction networks. Finally, a feature fusion module based on receptive field convolution (FFRF) is introduced to improve the detection accuracy. The experimental results show that the accuracy of the algorithm is 95.6% when the intersection over union (IOU) is greater than 0.5, and the inference time is 8.7 ms, which can meet the actual demand of pipeline MFL detection.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>anchor-free</subject><subject>CenterNet</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>lightweight network</subject><subject>Machine learning</subject><subject>Magnetic flux</subject><subject>MFL</subject><subject>Network latency</subject><subject>object detection</subject><subject>Target detection</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1Pw0AQRE8IJEygp6CwRG2z9-m9MgoELCWCItQn-7wmjhI7nJ2Cfx9HSUE1zZsZ6TH2yCHlHOzLKl-mAoRMpQRlEK9YxLXOEmuMuGYRAMfEKm1u2V3fbwAgMyqLmJi28bT16y4kdSCKv5o9bZuW4uV8Eee74ofiVxrID03Xxksa1l11z27qYtvTwyUn7Hv-tpp9JIvP93w2XSReKD0kiChrkoCFJ2lESZWXwlYaoCpRefBSlsZ7shpqC4XAUloulPJkwKL2csKez7v70P0eqB_cpjuEdrx0AjVmimsOIwVnyoeu7wPVbh-aXRH-HAd3MuNGM-5kxl3MjJWnc6Uhon-4EBmaTB4Biq9csQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Han, Fucheng</creator><creator>Lang, Xianming</creator><creator>Liu, Mingyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2853-914X</orcidid><orcidid>https://orcid.org/0000-0002-0781-4141</orcidid><orcidid>https://orcid.org/0000-0002-8093-1176</orcidid></search><sort><creationdate>20230101</creationdate><title>An Anchor-free Pipeline MFL Image Detection Method</title><author>Han, Fucheng ; Lang, Xianming ; Liu, Mingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-8883fe308ace362bedc329d500db84c0c33b6cce950f90a28b391244ce60985c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>anchor-free</topic><topic>CenterNet</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>lightweight network</topic><topic>Machine learning</topic><topic>Magnetic flux</topic><topic>MFL</topic><topic>Network latency</topic><topic>object detection</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Fucheng</creatorcontrib><creatorcontrib>Lang, Xianming</creatorcontrib><creatorcontrib>Liu, Mingyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Fucheng</au><au>Lang, Xianming</au><au>Liu, Mingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Anchor-free Pipeline MFL Image Detection Method</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>To apply deep learning algorithms to magnetic flux leakage (MFL) detection, we propose an anchor-free pipeline MFL image detection method (AFMFLDM) that can simultaneously combine low latency and high accuracy. The algorithm is modified based on CenterNet. The anchor-free target detection algorithm does not need to design the anchor box size compared to the one-stage and two-stage target detection algorithms, and there is no nonmaximum suppression (NMS) process, which reduces the computational effort. Then, the backbone of this algorithm is selected as a modified PP-LCNet, which replaces the normal convolution with a depthwise separable convolution. It is supplemented with a technique of adjusting parameters to form a network similar to MobileNetV1, which ensures low computational effort and high accuracy compared with the popular feature extraction networks. Finally, a feature fusion module based on receptive field convolution (FFRF) is introduced to improve the detection accuracy. The experimental results show that the accuracy of the algorithm is 95.6% when the intersection over union (IOU) is greater than 0.5, and the inference time is 8.7 ms, which can meet the actual demand of pipeline MFL detection.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3304688</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2853-914X</orcidid><orcidid>https://orcid.org/0000-0002-0781-4141</orcidid><orcidid>https://orcid.org/0000-0002-8093-1176</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10227867 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms anchor-free CenterNet Convolution Feature extraction Image detection lightweight network Machine learning Magnetic flux MFL Network latency object detection Target detection |
title | An Anchor-free Pipeline MFL Image Detection Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Anchor-free%20Pipeline%20MFL%20Image%20Detection%20Method&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Han,%20Fucheng&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3304688&rft_dat=%3Cproquest_RIE%3E2858741510%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858741510&rft_id=info:pmid/&rft_ieee_id=10227867&rfr_iscdi=true |