Human-Imperceptible Identification with Learnable Lensless Imaging
Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice v...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Canh, Thuong Nguyen Ngo, Trung Thanh Nagahara, Haijme |
description | Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks. |
doi_str_mv | 10.1109/ACCESS.2023.3308069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10227292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10227292</ieee_id><doaj_id>oai_doaj_org_article_ae1eb7d65a8b4493922fa79304358ef7</doaj_id><sourcerecordid>2864344217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQDaJgqf0Fegh4Tt3vj2Mt1QYKHqrnZZPM1i35qLsp4r83NUU6lxnevPeGeUlyj9EcY6SfFsvlarudE0TonFKkkNBXyYRgoTPKqbi-mG-TWYx7NJQaIC4nyfP62Ng2y5sDhBIOvS9qSPMK2t47X9red2367fvPdAM2tPa03UAba4gxzRu78-3uLrlxto4wO_dp8vGyel-us83ba75cbLKSId1nXLISK-kKUQmptSIFLxEg6oRVghe2AigLVClmMXaOOKsRFhXhVNKBJzidJvnoW3V2bw7BNzb8mM568wd0YWds6H1Zg7GAoZCV4FYVjGmqyeAnNUWMcgVODl6Po9chdF9HiL3Zd8fhvzoaogSjjBF8YtGRVYYuxgDu_ypG5pS9GbM3p-zNOftB9TCqPABcKAiRRBP6C__IfyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864344217</pqid></control><display><type>article</type><title>Human-Imperceptible Identification with Learnable Lensless Imaging</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Canh, Thuong Nguyen ; Ngo, Trung Thanh ; Nagahara, Haijme</creator><creatorcontrib>Canh, Thuong Nguyen ; Ngo, Trung Thanh ; Nagahara, Haijme</creatorcontrib><description>Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3308069</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Compressive Sensing ; convolutional neural network ; Image recognition ; Image reconstruction ; Imaging ; lensless imaging ; Privacy ; privacy preserving ; Training ; Visualization</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</citedby><cites>FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</cites><orcidid>0000-0002-7880-6659 ; 0000-0003-1579-8767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10227292$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,27620,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Canh, Thuong Nguyen</creatorcontrib><creatorcontrib>Ngo, Trung Thanh</creatorcontrib><creatorcontrib>Nagahara, Haijme</creatorcontrib><title>Human-Imperceptible Identification with Learnable Lensless Imaging</title><title>IEEE access</title><addtitle>Access</addtitle><description>Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.</description><subject>Cameras</subject><subject>Compressive Sensing</subject><subject>convolutional neural network</subject><subject>Image recognition</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>lensless imaging</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>Training</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQDaJgqf0Fegh4Tt3vj2Mt1QYKHqrnZZPM1i35qLsp4r83NUU6lxnevPeGeUlyj9EcY6SfFsvlarudE0TonFKkkNBXyYRgoTPKqbi-mG-TWYx7NJQaIC4nyfP62Ng2y5sDhBIOvS9qSPMK2t47X9red2367fvPdAM2tPa03UAba4gxzRu78-3uLrlxto4wO_dp8vGyel-us83ba75cbLKSId1nXLISK-kKUQmptSIFLxEg6oRVghe2AigLVClmMXaOOKsRFhXhVNKBJzidJvnoW3V2bw7BNzb8mM568wd0YWds6H1Zg7GAoZCV4FYVjGmqyeAnNUWMcgVODl6Po9chdF9HiL3Zd8fhvzoaogSjjBF8YtGRVYYuxgDu_ypG5pS9GbM3p-zNOftB9TCqPABcKAiRRBP6C__IfyQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Canh, Thuong Nguyen</creator><creator>Ngo, Trung Thanh</creator><creator>Nagahara, Haijme</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7880-6659</orcidid><orcidid>https://orcid.org/0000-0003-1579-8767</orcidid></search><sort><creationdate>20230101</creationdate><title>Human-Imperceptible Identification with Learnable Lensless Imaging</title><author>Canh, Thuong Nguyen ; Ngo, Trung Thanh ; Nagahara, Haijme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Compressive Sensing</topic><topic>convolutional neural network</topic><topic>Image recognition</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>lensless imaging</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canh, Thuong Nguyen</creatorcontrib><creatorcontrib>Ngo, Trung Thanh</creatorcontrib><creatorcontrib>Nagahara, Haijme</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canh, Thuong Nguyen</au><au>Ngo, Trung Thanh</au><au>Nagahara, Haijme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human-Imperceptible Identification with Learnable Lensless Imaging</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3308069</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7880-6659</orcidid><orcidid>https://orcid.org/0000-0003-1579-8767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10227292 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cameras Compressive Sensing convolutional neural network Image recognition Image reconstruction Imaging lensless imaging Privacy privacy preserving Training Visualization |
title | Human-Imperceptible Identification with Learnable Lensless Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human-Imperceptible%20Identification%20with%20Learnable%20Lensless%20Imaging&rft.jtitle=IEEE%20access&rft.au=Canh,%20Thuong%20Nguyen&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3308069&rft_dat=%3Cproquest_ieee_%3E2864344217%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864344217&rft_id=info:pmid/&rft_ieee_id=10227292&rft_doaj_id=oai_doaj_org_article_ae1eb7d65a8b4493922fa79304358ef7&rfr_iscdi=true |