Human-Imperceptible Identification with Learnable Lensless Imaging

Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Canh, Thuong Nguyen, Ngo, Trung Thanh, Nagahara, Haijme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Canh, Thuong Nguyen
Ngo, Trung Thanh
Nagahara, Haijme
description Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.
doi_str_mv 10.1109/ACCESS.2023.3308069
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10227292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10227292</ieee_id><doaj_id>oai_doaj_org_article_ae1eb7d65a8b4493922fa79304358ef7</doaj_id><sourcerecordid>2864344217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQDaJgqf0Fegh4Tt3vj2Mt1QYKHqrnZZPM1i35qLsp4r83NUU6lxnevPeGeUlyj9EcY6SfFsvlarudE0TonFKkkNBXyYRgoTPKqbi-mG-TWYx7NJQaIC4nyfP62Ng2y5sDhBIOvS9qSPMK2t47X9red2367fvPdAM2tPa03UAba4gxzRu78-3uLrlxto4wO_dp8vGyel-us83ba75cbLKSId1nXLISK-kKUQmptSIFLxEg6oRVghe2AigLVClmMXaOOKsRFhXhVNKBJzidJvnoW3V2bw7BNzb8mM568wd0YWds6H1Zg7GAoZCV4FYVjGmqyeAnNUWMcgVODl6Po9chdF9HiL3Zd8fhvzoaogSjjBF8YtGRVYYuxgDu_ypG5pS9GbM3p-zNOftB9TCqPABcKAiRRBP6C__IfyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864344217</pqid></control><display><type>article</type><title>Human-Imperceptible Identification with Learnable Lensless Imaging</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Canh, Thuong Nguyen ; Ngo, Trung Thanh ; Nagahara, Haijme</creator><creatorcontrib>Canh, Thuong Nguyen ; Ngo, Trung Thanh ; Nagahara, Haijme</creatorcontrib><description>Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3308069</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Compressive Sensing ; convolutional neural network ; Image recognition ; Image reconstruction ; Imaging ; lensless imaging ; Privacy ; privacy preserving ; Training ; Visualization</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</citedby><cites>FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</cites><orcidid>0000-0002-7880-6659 ; 0000-0003-1579-8767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10227292$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,27620,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Canh, Thuong Nguyen</creatorcontrib><creatorcontrib>Ngo, Trung Thanh</creatorcontrib><creatorcontrib>Nagahara, Haijme</creatorcontrib><title>Human-Imperceptible Identification with Learnable Lensless Imaging</title><title>IEEE access</title><addtitle>Access</addtitle><description>Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.</description><subject>Cameras</subject><subject>Compressive Sensing</subject><subject>convolutional neural network</subject><subject>Image recognition</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>lensless imaging</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>Training</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQDaJgqf0Fegh4Tt3vj2Mt1QYKHqrnZZPM1i35qLsp4r83NUU6lxnevPeGeUlyj9EcY6SfFsvlarudE0TonFKkkNBXyYRgoTPKqbi-mG-TWYx7NJQaIC4nyfP62Ng2y5sDhBIOvS9qSPMK2t47X9red2367fvPdAM2tPa03UAba4gxzRu78-3uLrlxto4wO_dp8vGyel-us83ba75cbLKSId1nXLISK-kKUQmptSIFLxEg6oRVghe2AigLVClmMXaOOKsRFhXhVNKBJzidJvnoW3V2bw7BNzb8mM568wd0YWds6H1Zg7GAoZCV4FYVjGmqyeAnNUWMcgVODl6Po9chdF9HiL3Zd8fhvzoaogSjjBF8YtGRVYYuxgDu_ypG5pS9GbM3p-zNOftB9TCqPABcKAiRRBP6C__IfyQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Canh, Thuong Nguyen</creator><creator>Ngo, Trung Thanh</creator><creator>Nagahara, Haijme</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7880-6659</orcidid><orcidid>https://orcid.org/0000-0003-1579-8767</orcidid></search><sort><creationdate>20230101</creationdate><title>Human-Imperceptible Identification with Learnable Lensless Imaging</title><author>Canh, Thuong Nguyen ; Ngo, Trung Thanh ; Nagahara, Haijme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-574c187fb6d679982b5c0e03f6a865badeecb0d84a11ff2fa9016d25373c0e653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Compressive Sensing</topic><topic>convolutional neural network</topic><topic>Image recognition</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>lensless imaging</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canh, Thuong Nguyen</creatorcontrib><creatorcontrib>Ngo, Trung Thanh</creatorcontrib><creatorcontrib>Nagahara, Haijme</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canh, Thuong Nguyen</au><au>Ngo, Trung Thanh</au><au>Nagahara, Haijme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human-Imperceptible Identification with Learnable Lensless Imaging</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3308069</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7880-6659</orcidid><orcidid>https://orcid.org/0000-0003-1579-8767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10227292
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cameras
Compressive Sensing
convolutional neural network
Image recognition
Image reconstruction
Imaging
lensless imaging
Privacy
privacy preserving
Training
Visualization
title Human-Imperceptible Identification with Learnable Lensless Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human-Imperceptible%20Identification%20with%20Learnable%20Lensless%20Imaging&rft.jtitle=IEEE%20access&rft.au=Canh,%20Thuong%20Nguyen&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3308069&rft_dat=%3Cproquest_ieee_%3E2864344217%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864344217&rft_id=info:pmid/&rft_ieee_id=10227292&rft_doaj_id=oai_doaj_org_article_ae1eb7d65a8b4493922fa79304358ef7&rfr_iscdi=true