Single/Multi-Source Black-Box Domain Adaption for Sensor Time Series Data

Unsupervised domain adaption (UDA), which transfers knowledge from a labeled source domain to an unlabeled target domain, has attracted tremendous attention in many machine learning applications. Recently, there have been attempts to apply domain adaption for sensor time series data, such as human a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-08, Vol.54 (8), p.4712-4723
Hauptverfasser: Ren, Lei, Cheng, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4723
container_issue 8
container_start_page 4712
container_title IEEE transactions on cybernetics
container_volume 54
creator Ren, Lei
Cheng, Xuejun
description Unsupervised domain adaption (UDA), which transfers knowledge from a labeled source domain to an unlabeled target domain, has attracted tremendous attention in many machine learning applications. Recently, there have been attempts to apply domain adaption for sensor time series data, such as human activity recognition and gesture recognition. However, existing methods suffer from some drawbacks that hinder further performance improvement. They often require access to source data or source models during training, which is unavailable in some fields because of privacy protection and storage limit. Typically, the source domains may only provide an application programming interface (API) for the target domain to call. On the other hand, current UDA methods have not considered the temporal consistency and low-signal-to-noise ratio (SNR) of sensor time series. To address the challenges, this article presents a black-box domain adaption framework for sensor time series data (B2TSDA). First, we propose a single/multi-source teacher-student learning framework to distill the knowledge from the source domains to a customized target model. Then we design a new temporal consistency loss by combining an adaptive mask method and dynamic threshold method to maintain consistent temporal information and balance the learning difficulties of different classes. For the multisource black-box domain adaption, we further propose a Shapley-enhanced method to determine the contribution of each source domain. Experimental results on both single-source and multisource domain adaption show that our framework has superior performance compared to other black-box UDA methods.
doi_str_mv 10.1109/TCYB.2023.3300832
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10226509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10226509</ieee_id><sourcerecordid>2856322377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-b6ed66bcbe5a3efb32322f3c65e60c36d995a42b6dcf0faef3617212aff3ebc83</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EohX0A5AQypJNWj8aO1m25VWpiEXLgpXlONfIkMTFTiT4e1y1VNzNjK5mZnEQuiJ4TAguJpvF23xMMWVjxjDOGT1BQ0p4nlIqstOj52KARiF84Hh5fBX5ORowwbEg02KIlmvbvtcwee7rzqZr13sNybxW-jOdu-_kzjXKtsmsUtvOujYxzidraEOUjW0gem8hJHeqU5fozKg6wOigF-j14X6zeEpXL4_LxWyVaiqmXVpyqDgvdQmZYmBKRhmlhmmeAcea8aooMjWlJa-0wUaBYZwISqgyhkGpc3aBbve7W---egidbGzQUNeqBdcHSfOMx0kmRIySfVR7F4IHI7feNsr_SILlDqLcQZQ7iPIAMXZuDvN92UB1bPwhi4HrfcACwL_BiDrDBfsFGYF1UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856322377</pqid></control><display><type>article</type><title>Single/Multi-Source Black-Box Domain Adaption for Sensor Time Series Data</title><source>IEEE Electronic Library (IEL)</source><creator>Ren, Lei ; Cheng, Xuejun</creator><creatorcontrib>Ren, Lei ; Cheng, Xuejun</creatorcontrib><description>Unsupervised domain adaption (UDA), which transfers knowledge from a labeled source domain to an unlabeled target domain, has attracted tremendous attention in many machine learning applications. Recently, there have been attempts to apply domain adaption for sensor time series data, such as human activity recognition and gesture recognition. However, existing methods suffer from some drawbacks that hinder further performance improvement. They often require access to source data or source models during training, which is unavailable in some fields because of privacy protection and storage limit. Typically, the source domains may only provide an application programming interface (API) for the target domain to call. On the other hand, current UDA methods have not considered the temporal consistency and low-signal-to-noise ratio (SNR) of sensor time series. To address the challenges, this article presents a black-box domain adaption framework for sensor time series data (B2TSDA). First, we propose a single/multi-source teacher-student learning framework to distill the knowledge from the source domains to a customized target model. Then we design a new temporal consistency loss by combining an adaptive mask method and dynamic threshold method to maintain consistent temporal information and balance the learning difficulties of different classes. For the multisource black-box domain adaption, we further propose a Shapley-enhanced method to determine the contribution of each source domain. Experimental results on both single-source and multisource domain adaption show that our framework has superior performance compared to other black-box UDA methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>ISSN: 2168-2275</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2023.3300832</identifier><identifier>PMID: 37607149</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Activity recognition ; Adaptation models ; Adversarial machine learning ; Closed box ; Data models ; gesture recognition ; multisource transfer learning ; Predictive models ; time series ; Time series analysis ; Training ; unsupervised domain adaptation</subject><ispartof>IEEE transactions on cybernetics, 2024-08, Vol.54 (8), p.4712-4723</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-b6ed66bcbe5a3efb32322f3c65e60c36d995a42b6dcf0faef3617212aff3ebc83</cites><orcidid>0000-0001-6346-6930 ; 0000-0001-5644-7109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10226509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10226509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37607149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Cheng, Xuejun</creatorcontrib><title>Single/Multi-Source Black-Box Domain Adaption for Sensor Time Series Data</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Unsupervised domain adaption (UDA), which transfers knowledge from a labeled source domain to an unlabeled target domain, has attracted tremendous attention in many machine learning applications. Recently, there have been attempts to apply domain adaption for sensor time series data, such as human activity recognition and gesture recognition. However, existing methods suffer from some drawbacks that hinder further performance improvement. They often require access to source data or source models during training, which is unavailable in some fields because of privacy protection and storage limit. Typically, the source domains may only provide an application programming interface (API) for the target domain to call. On the other hand, current UDA methods have not considered the temporal consistency and low-signal-to-noise ratio (SNR) of sensor time series. To address the challenges, this article presents a black-box domain adaption framework for sensor time series data (B2TSDA). First, we propose a single/multi-source teacher-student learning framework to distill the knowledge from the source domains to a customized target model. Then we design a new temporal consistency loss by combining an adaptive mask method and dynamic threshold method to maintain consistent temporal information and balance the learning difficulties of different classes. For the multisource black-box domain adaption, we further propose a Shapley-enhanced method to determine the contribution of each source domain. Experimental results on both single-source and multisource domain adaption show that our framework has superior performance compared to other black-box UDA methods.</description><subject>Activity recognition</subject><subject>Adaptation models</subject><subject>Adversarial machine learning</subject><subject>Closed box</subject><subject>Data models</subject><subject>gesture recognition</subject><subject>multisource transfer learning</subject><subject>Predictive models</subject><subject>time series</subject><subject>Time series analysis</subject><subject>Training</subject><subject>unsupervised domain adaptation</subject><issn>2168-2267</issn><issn>2168-2275</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAURC0EohX0A5AQypJNWj8aO1m25VWpiEXLgpXlONfIkMTFTiT4e1y1VNzNjK5mZnEQuiJ4TAguJpvF23xMMWVjxjDOGT1BQ0p4nlIqstOj52KARiF84Hh5fBX5ORowwbEg02KIlmvbvtcwee7rzqZr13sNybxW-jOdu-_kzjXKtsmsUtvOujYxzidraEOUjW0gem8hJHeqU5fozKg6wOigF-j14X6zeEpXL4_LxWyVaiqmXVpyqDgvdQmZYmBKRhmlhmmeAcea8aooMjWlJa-0wUaBYZwISqgyhkGpc3aBbve7W---egidbGzQUNeqBdcHSfOMx0kmRIySfVR7F4IHI7feNsr_SILlDqLcQZQ7iPIAMXZuDvN92UB1bPwhi4HrfcACwL_BiDrDBfsFGYF1UA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Ren, Lei</creator><creator>Cheng, Xuejun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6346-6930</orcidid><orcidid>https://orcid.org/0000-0001-5644-7109</orcidid></search><sort><creationdate>20240801</creationdate><title>Single/Multi-Source Black-Box Domain Adaption for Sensor Time Series Data</title><author>Ren, Lei ; Cheng, Xuejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-b6ed66bcbe5a3efb32322f3c65e60c36d995a42b6dcf0faef3617212aff3ebc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity recognition</topic><topic>Adaptation models</topic><topic>Adversarial machine learning</topic><topic>Closed box</topic><topic>Data models</topic><topic>gesture recognition</topic><topic>multisource transfer learning</topic><topic>Predictive models</topic><topic>time series</topic><topic>Time series analysis</topic><topic>Training</topic><topic>unsupervised domain adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Cheng, Xuejun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren, Lei</au><au>Cheng, Xuejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single/Multi-Source Black-Box Domain Adaption for Sensor Time Series Data</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>54</volume><issue>8</issue><spage>4712</spage><epage>4723</epage><pages>4712-4723</pages><issn>2168-2267</issn><issn>2168-2275</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Unsupervised domain adaption (UDA), which transfers knowledge from a labeled source domain to an unlabeled target domain, has attracted tremendous attention in many machine learning applications. Recently, there have been attempts to apply domain adaption for sensor time series data, such as human activity recognition and gesture recognition. However, existing methods suffer from some drawbacks that hinder further performance improvement. They often require access to source data or source models during training, which is unavailable in some fields because of privacy protection and storage limit. Typically, the source domains may only provide an application programming interface (API) for the target domain to call. On the other hand, current UDA methods have not considered the temporal consistency and low-signal-to-noise ratio (SNR) of sensor time series. To address the challenges, this article presents a black-box domain adaption framework for sensor time series data (B2TSDA). First, we propose a single/multi-source teacher-student learning framework to distill the knowledge from the source domains to a customized target model. Then we design a new temporal consistency loss by combining an adaptive mask method and dynamic threshold method to maintain consistent temporal information and balance the learning difficulties of different classes. For the multisource black-box domain adaption, we further propose a Shapley-enhanced method to determine the contribution of each source domain. Experimental results on both single-source and multisource domain adaption show that our framework has superior performance compared to other black-box UDA methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37607149</pmid><doi>10.1109/TCYB.2023.3300832</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6346-6930</orcidid><orcidid>https://orcid.org/0000-0001-5644-7109</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2024-08, Vol.54 (8), p.4712-4723
issn 2168-2267
2168-2275
2168-2275
language eng
recordid cdi_ieee_primary_10226509
source IEEE Electronic Library (IEL)
subjects Activity recognition
Adaptation models
Adversarial machine learning
Closed box
Data models
gesture recognition
multisource transfer learning
Predictive models
time series
Time series analysis
Training
unsupervised domain adaptation
title Single/Multi-Source Black-Box Domain Adaption for Sensor Time Series Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single/Multi-Source%20Black-Box%20Domain%20Adaption%20for%20Sensor%20Time%20Series%20Data&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Ren,%20Lei&rft.date=2024-08-01&rft.volume=54&rft.issue=8&rft.spage=4712&rft.epage=4723&rft.pages=4712-4723&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2023.3300832&rft_dat=%3Cproquest_RIE%3E2856322377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856322377&rft_id=info:pmid/37607149&rft_ieee_id=10226509&rfr_iscdi=true