Robust Command-Filtered Control with Prescribed Performance for Flexible-Joint Robots

This article proposes a robust command-filtered control method with prescribed performance for flexible-joint robots (FJRs) wherein matched and mismatched disturbances are compensated by designing generalized proportional integral disturbance observers (GPIOs). The contributions are threefold. First...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Hauptverfasser: Zhang, Yang, Lei, Yanqiang, Zhang, Tichong, Song, Rui, Li, Yibin, Du, Fuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Zhang, Yang
Lei, Yanqiang
Zhang, Tichong
Song, Rui
Li, Yibin
Du, Fuxin
description This article proposes a robust command-filtered control method with prescribed performance for flexible-joint robots (FJRs) wherein matched and mismatched disturbances are compensated by designing generalized proportional integral disturbance observers (GPIOs). The contributions are threefold. Firstly, a prescribed performance function (PPF), compared with that of the previous schemes, frees the assumption that the initial value of tracking errors within a predetermined region and thus is global, which brings dynamic response and steady-state precision benefits. Secondly, unlike most existing backstepping controllers that handle only internal uncertainties, the method presented here also considers time-varying external disturbances which may affect the tracking performance of the FJRs. Thirdly, a second-order command filter and a filter error compensation method are designed to avoid the "complexity explosion" problem encountered in the traditional backstepping scheme. Analysis with the Lyapunov function proves the asymptotical stability of the closed-loop system. Simulation and experiments are performed to validate the feasibility and fine performance of the recommended control strategy.
doi_str_mv 10.1109/TIM.2023.3306514
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10225629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225629</ieee_id><sourcerecordid>2862648026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dc0c735f1abe8dd906b56c21f9ea9c69c629bfd70ed71618c4cb7fbc9d51a6933</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKt3Dx4WPG-dZDfZzVGK1UrFIu05bJJZ3LLd1CRF_femtAdhYIbHezPDR8gthQmlIB9W87cJA1ZMigIEp-UZGVHOq1wKwc7JCIDWuSy5uCRXIWwAoBJlNSLrD6f3IWZTt902g81nXR_Ro03CEL3rs-8ufmZLj8H4Tid9ib51PnkNZmnIZj3-dLrH_NV1Q8zSOhfDNblomz7gzamPyXr2tJq-5Iv35_n0cZEbJlnMrQFTFbyljcbaWglCc2EYbSU20ohUTOrWVoC2ooLWpjS6arWRltNGyKIYk_vj3p13X3sMUW3c3g_ppGK1YKKsgYnkgqPLeBeCx1btfLdt_K-ioA7wVIKnDvDUCV6K3B0jHSL-szPG00_FH_BPa_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862648026</pqid></control><display><type>article</type><title>Robust Command-Filtered Control with Prescribed Performance for Flexible-Joint Robots</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yang ; Lei, Yanqiang ; Zhang, Tichong ; Song, Rui ; Li, Yibin ; Du, Fuxin</creator><creatorcontrib>Zhang, Yang ; Lei, Yanqiang ; Zhang, Tichong ; Song, Rui ; Li, Yibin ; Du, Fuxin</creatorcontrib><description>This article proposes a robust command-filtered control method with prescribed performance for flexible-joint robots (FJRs) wherein matched and mismatched disturbances are compensated by designing generalized proportional integral disturbance observers (GPIOs). The contributions are threefold. Firstly, a prescribed performance function (PPF), compared with that of the previous schemes, frees the assumption that the initial value of tracking errors within a predetermined region and thus is global, which brings dynamic response and steady-state precision benefits. Secondly, unlike most existing backstepping controllers that handle only internal uncertainties, the method presented here also considers time-varying external disturbances which may affect the tracking performance of the FJRs. Thirdly, a second-order command filter and a filter error compensation method are designed to avoid the "complexity explosion" problem encountered in the traditional backstepping scheme. Analysis with the Lyapunov function proves the asymptotical stability of the closed-loop system. Simulation and experiments are performed to validate the feasibility and fine performance of the recommended control strategy.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3306514</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Backstepping ; Closed loops ; Command-filtered control ; Control methods ; disturbance observer ; Disturbances ; Dynamic response ; Error compensation ; Explosions ; Feedback control ; flexible-joint robot (FJR) ; Liapunov functions ; mismatched disturbance ; Nonlinear dynamical systems ; prescribed performance ; Proportional integral ; Robots ; Robust control ; Stability analysis ; Time-varying systems ; Tracking errors ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dc0c735f1abe8dd906b56c21f9ea9c69c629bfd70ed71618c4cb7fbc9d51a6933</citedby><cites>FETCH-LOGICAL-c292t-dc0c735f1abe8dd906b56c21f9ea9c69c629bfd70ed71618c4cb7fbc9d51a6933</cites><orcidid>0000-0003-0334-0927 ; 0009-0002-3048-7510 ; 0000-0002-5906-5074 ; 0000-0002-8075-0930 ; 0000-0001-9781-9677 ; 0000-0002-1189-3364 ; 0000-0002-4119-4433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225629$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10225629$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Lei, Yanqiang</creatorcontrib><creatorcontrib>Zhang, Tichong</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><creatorcontrib>Du, Fuxin</creatorcontrib><title>Robust Command-Filtered Control with Prescribed Performance for Flexible-Joint Robots</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article proposes a robust command-filtered control method with prescribed performance for flexible-joint robots (FJRs) wherein matched and mismatched disturbances are compensated by designing generalized proportional integral disturbance observers (GPIOs). The contributions are threefold. Firstly, a prescribed performance function (PPF), compared with that of the previous schemes, frees the assumption that the initial value of tracking errors within a predetermined region and thus is global, which brings dynamic response and steady-state precision benefits. Secondly, unlike most existing backstepping controllers that handle only internal uncertainties, the method presented here also considers time-varying external disturbances which may affect the tracking performance of the FJRs. Thirdly, a second-order command filter and a filter error compensation method are designed to avoid the "complexity explosion" problem encountered in the traditional backstepping scheme. Analysis with the Lyapunov function proves the asymptotical stability of the closed-loop system. Simulation and experiments are performed to validate the feasibility and fine performance of the recommended control strategy.</description><subject>Backstepping</subject><subject>Closed loops</subject><subject>Command-filtered control</subject><subject>Control methods</subject><subject>disturbance observer</subject><subject>Disturbances</subject><subject>Dynamic response</subject><subject>Error compensation</subject><subject>Explosions</subject><subject>Feedback control</subject><subject>flexible-joint robot (FJR)</subject><subject>Liapunov functions</subject><subject>mismatched disturbance</subject><subject>Nonlinear dynamical systems</subject><subject>prescribed performance</subject><subject>Proportional integral</subject><subject>Robots</subject><subject>Robust control</subject><subject>Stability analysis</subject><subject>Time-varying systems</subject><subject>Tracking errors</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMoWKt3Dx4WPG-dZDfZzVGK1UrFIu05bJJZ3LLd1CRF_femtAdhYIbHezPDR8gthQmlIB9W87cJA1ZMigIEp-UZGVHOq1wKwc7JCIDWuSy5uCRXIWwAoBJlNSLrD6f3IWZTt902g81nXR_Ro03CEL3rs-8ufmZLj8H4Tid9ib51PnkNZmnIZj3-dLrH_NV1Q8zSOhfDNblomz7gzamPyXr2tJq-5Iv35_n0cZEbJlnMrQFTFbyljcbaWglCc2EYbSU20ohUTOrWVoC2ooLWpjS6arWRltNGyKIYk_vj3p13X3sMUW3c3g_ppGK1YKKsgYnkgqPLeBeCx1btfLdt_K-ioA7wVIKnDvDUCV6K3B0jHSL-szPG00_FH_BPa_g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, Yang</creator><creator>Lei, Yanqiang</creator><creator>Zhang, Tichong</creator><creator>Song, Rui</creator><creator>Li, Yibin</creator><creator>Du, Fuxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0334-0927</orcidid><orcidid>https://orcid.org/0009-0002-3048-7510</orcidid><orcidid>https://orcid.org/0000-0002-5906-5074</orcidid><orcidid>https://orcid.org/0000-0002-8075-0930</orcidid><orcidid>https://orcid.org/0000-0001-9781-9677</orcidid><orcidid>https://orcid.org/0000-0002-1189-3364</orcidid><orcidid>https://orcid.org/0000-0002-4119-4433</orcidid></search><sort><creationdate>20230101</creationdate><title>Robust Command-Filtered Control with Prescribed Performance for Flexible-Joint Robots</title><author>Zhang, Yang ; Lei, Yanqiang ; Zhang, Tichong ; Song, Rui ; Li, Yibin ; Du, Fuxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dc0c735f1abe8dd906b56c21f9ea9c69c629bfd70ed71618c4cb7fbc9d51a6933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Backstepping</topic><topic>Closed loops</topic><topic>Command-filtered control</topic><topic>Control methods</topic><topic>disturbance observer</topic><topic>Disturbances</topic><topic>Dynamic response</topic><topic>Error compensation</topic><topic>Explosions</topic><topic>Feedback control</topic><topic>flexible-joint robot (FJR)</topic><topic>Liapunov functions</topic><topic>mismatched disturbance</topic><topic>Nonlinear dynamical systems</topic><topic>prescribed performance</topic><topic>Proportional integral</topic><topic>Robots</topic><topic>Robust control</topic><topic>Stability analysis</topic><topic>Time-varying systems</topic><topic>Tracking errors</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Lei, Yanqiang</creatorcontrib><creatorcontrib>Zhang, Tichong</creatorcontrib><creatorcontrib>Song, Rui</creatorcontrib><creatorcontrib>Li, Yibin</creatorcontrib><creatorcontrib>Du, Fuxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yang</au><au>Lei, Yanqiang</au><au>Zhang, Tichong</au><au>Song, Rui</au><au>Li, Yibin</au><au>Du, Fuxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Command-Filtered Control with Prescribed Performance for Flexible-Joint Robots</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article proposes a robust command-filtered control method with prescribed performance for flexible-joint robots (FJRs) wherein matched and mismatched disturbances are compensated by designing generalized proportional integral disturbance observers (GPIOs). The contributions are threefold. Firstly, a prescribed performance function (PPF), compared with that of the previous schemes, frees the assumption that the initial value of tracking errors within a predetermined region and thus is global, which brings dynamic response and steady-state precision benefits. Secondly, unlike most existing backstepping controllers that handle only internal uncertainties, the method presented here also considers time-varying external disturbances which may affect the tracking performance of the FJRs. Thirdly, a second-order command filter and a filter error compensation method are designed to avoid the "complexity explosion" problem encountered in the traditional backstepping scheme. Analysis with the Lyapunov function proves the asymptotical stability of the closed-loop system. Simulation and experiments are performed to validate the feasibility and fine performance of the recommended control strategy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3306514</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0334-0927</orcidid><orcidid>https://orcid.org/0009-0002-3048-7510</orcidid><orcidid>https://orcid.org/0000-0002-5906-5074</orcidid><orcidid>https://orcid.org/0000-0002-8075-0930</orcidid><orcidid>https://orcid.org/0000-0001-9781-9677</orcidid><orcidid>https://orcid.org/0000-0002-1189-3364</orcidid><orcidid>https://orcid.org/0000-0002-4119-4433</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10225629
source IEEE Electronic Library (IEL)
subjects Backstepping
Closed loops
Command-filtered control
Control methods
disturbance observer
Disturbances
Dynamic response
Error compensation
Explosions
Feedback control
flexible-joint robot (FJR)
Liapunov functions
mismatched disturbance
Nonlinear dynamical systems
prescribed performance
Proportional integral
Robots
Robust control
Stability analysis
Time-varying systems
Tracking errors
Trajectory
Uncertainty
title Robust Command-Filtered Control with Prescribed Performance for Flexible-Joint Robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Command-Filtered%20Control%20with%20Prescribed%20Performance%20for%20Flexible-Joint%20Robots&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhang,%20Yang&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3306514&rft_dat=%3Cproquest_RIE%3E2862648026%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862648026&rft_id=info:pmid/&rft_ieee_id=10225629&rfr_iscdi=true