Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band

We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2023-12, Vol.59 (6), p.1-13
Hauptverfasser: Rahman, Aniq Ur, Kishk, Mustafa A., Alouini, Mohamed-Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 6
container_start_page 1
container_title IEEE transactions on aerospace and electronic systems
container_volume 59
creator Rahman, Aniq Ur
Kishk, Mustafa A.
Alouini, Mohamed-Slim
description We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to \sim 30% at the expense of the data rate of the backhaul points degrading by \sim 2%.
doi_str_mv 10.1109/TAES.2023.3302819
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10221681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10221681</ieee_id><sourcerecordid>2901190044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c54e3b10f1ea3e84c548c83f0ff185279775d00acc344872a43d0f7e670a026d3</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEmPwAEgcInHusJO0TY9jjA1pgsPGOQqtIzpKO5JMDJ6eTtuBk_VL329bH2PXCCNEKO5W4-lyJEDIkZQgNBYnbIBpmidFBvKUDQBQJ4VI8ZxdhLDuo9JKDtjDpKNdHSK1JfHO8RV5TyH62jbcthVf2khNU0fizxS_O_8ReN3y-E5caD6b__L7nrpkZ842ga6Oc8heH6eryTxZvMyeJuNFUgqVxaRMFck3BIdkJWnVZ11q6cA51KnIizxPKwBbllIpnQurZAUupywHCyKr5JDdHvZufPe17d80627r2_6kEQUgFgBK9RQeqNJ3IXhyZuPrT-t_DILZyzJ7WWYvyxxl9Z2bQ6cmon-8EJhplH98d2N6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901190044</pqid></control><display><type>article</type><title>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</title><source>IEEE Electronic Library (IEL)</source><creator>Rahman, Aniq Ur ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creator><creatorcontrib>Rahman, Aniq Ur ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creatorcontrib><description><![CDATA[We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to <inline-formula><tex-math notation="LaTeX">\sim 30%</tex-math></inline-formula> at the expense of the data rate of the backhaul points degrading by <inline-formula><tex-math notation="LaTeX">\sim 2%</tex-math></inline-formula>.]]></description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3302819</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Backhaul networks ; Cellular communication ; Combinatorial analysis ; Earth ; Earth stations ; Exclusion zones ; Geometry ; Interference ; Mathematical analysis ; Millimeter waves ; Optimization ; Radio spectrum management ; Regression ; satellite communication ; Satellite networks ; Satellites ; spectrum sharing ; Statistical analysis ; stochastic geometry ; Stochastic processes ; Transmitters</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c54e3b10f1ea3e84c548c83f0ff185279775d00acc344872a43d0f7e670a026d3</cites><orcidid>0000-0003-4827-1793 ; 0000-0001-7518-2783 ; 0000-0003-3685-7201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10221681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10221681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahman, Aniq Ur</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description><![CDATA[We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to <inline-formula><tex-math notation="LaTeX">\sim 30%</tex-math></inline-formula> at the expense of the data rate of the backhaul points degrading by <inline-formula><tex-math notation="LaTeX">\sim 2%</tex-math></inline-formula>.]]></description><subject>Approximation</subject><subject>Backhaul networks</subject><subject>Cellular communication</subject><subject>Combinatorial analysis</subject><subject>Earth</subject><subject>Earth stations</subject><subject>Exclusion zones</subject><subject>Geometry</subject><subject>Interference</subject><subject>Mathematical analysis</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Radio spectrum management</subject><subject>Regression</subject><subject>satellite communication</subject><subject>Satellite networks</subject><subject>Satellites</subject><subject>spectrum sharing</subject><subject>Statistical analysis</subject><subject>stochastic geometry</subject><subject>Stochastic processes</subject><subject>Transmitters</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAMhiMEEmPwAEgcInHusJO0TY9jjA1pgsPGOQqtIzpKO5JMDJ6eTtuBk_VL329bH2PXCCNEKO5W4-lyJEDIkZQgNBYnbIBpmidFBvKUDQBQJ4VI8ZxdhLDuo9JKDtjDpKNdHSK1JfHO8RV5TyH62jbcthVf2khNU0fizxS_O_8ReN3y-E5caD6b__L7nrpkZ842ga6Oc8heH6eryTxZvMyeJuNFUgqVxaRMFck3BIdkJWnVZ11q6cA51KnIizxPKwBbllIpnQurZAUupywHCyKr5JDdHvZufPe17d80627r2_6kEQUgFgBK9RQeqNJ3IXhyZuPrT-t_DILZyzJ7WWYvyxxl9Z2bQ6cmon-8EJhplH98d2N6</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Rahman, Aniq Ur</creator><creator>Kishk, Mustafa A.</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0003-3685-7201</orcidid></search><sort><creationdate>20231201</creationdate><title>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</title><author>Rahman, Aniq Ur ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c54e3b10f1ea3e84c548c83f0ff185279775d00acc344872a43d0f7e670a026d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Backhaul networks</topic><topic>Cellular communication</topic><topic>Combinatorial analysis</topic><topic>Earth</topic><topic>Earth stations</topic><topic>Exclusion zones</topic><topic>Geometry</topic><topic>Interference</topic><topic>Mathematical analysis</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Radio spectrum management</topic><topic>Regression</topic><topic>satellite communication</topic><topic>Satellite networks</topic><topic>Satellites</topic><topic>spectrum sharing</topic><topic>Statistical analysis</topic><topic>stochastic geometry</topic><topic>Stochastic processes</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Aniq Ur</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahman, Aniq Ur</au><au>Kishk, Mustafa A.</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract><![CDATA[We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to <inline-formula><tex-math notation="LaTeX">\sim 30%</tex-math></inline-formula> at the expense of the data rate of the backhaul points degrading by <inline-formula><tex-math notation="LaTeX">\sim 2%</tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3302819</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0003-3685-7201</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-13
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_10221681
source IEEE Electronic Library (IEL)
subjects Approximation
Backhaul networks
Cellular communication
Combinatorial analysis
Earth
Earth stations
Exclusion zones
Geometry
Interference
Mathematical analysis
Millimeter waves
Optimization
Radio spectrum management
Regression
satellite communication
Satellite networks
Satellites
spectrum sharing
Statistical analysis
stochastic geometry
Stochastic processes
Transmitters
title Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20of%20Terrestrial%20and%20Satellite%20Networks%20in%20the%2028%20GHz%20Band&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Rahman,%20Aniq%20Ur&rft.date=2023-12-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3302819&rft_dat=%3Cproquest_RIE%3E2901190044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901190044&rft_id=info:pmid/&rft_ieee_id=10221681&rfr_iscdi=true