Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band
We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2023-12, Vol.59 (6), p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 59 |
creator | Rahman, Aniq Ur Kishk, Mustafa A. Alouini, Mohamed-Slim |
description | We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to \sim 30% at the expense of the data rate of the backhaul points degrading by \sim 2%. |
doi_str_mv | 10.1109/TAES.2023.3302819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10221681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10221681</ieee_id><sourcerecordid>2901190044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c54e3b10f1ea3e84c548c83f0ff185279775d00acc344872a43d0f7e670a026d3</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEmPwAEgcInHusJO0TY9jjA1pgsPGOQqtIzpKO5JMDJ6eTtuBk_VL329bH2PXCCNEKO5W4-lyJEDIkZQgNBYnbIBpmidFBvKUDQBQJ4VI8ZxdhLDuo9JKDtjDpKNdHSK1JfHO8RV5TyH62jbcthVf2khNU0fizxS_O_8ReN3y-E5caD6b__L7nrpkZ842ga6Oc8heH6eryTxZvMyeJuNFUgqVxaRMFck3BIdkJWnVZ11q6cA51KnIizxPKwBbllIpnQurZAUupywHCyKr5JDdHvZufPe17d80627r2_6kEQUgFgBK9RQeqNJ3IXhyZuPrT-t_DILZyzJ7WWYvyxxl9Z2bQ6cmon-8EJhplH98d2N6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901190044</pqid></control><display><type>article</type><title>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</title><source>IEEE Electronic Library (IEL)</source><creator>Rahman, Aniq Ur ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creator><creatorcontrib>Rahman, Aniq Ur ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</creatorcontrib><description><![CDATA[We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to <inline-formula><tex-math notation="LaTeX">\sim 30%</tex-math></inline-formula> at the expense of the data rate of the backhaul points degrading by <inline-formula><tex-math notation="LaTeX">\sim 2%</tex-math></inline-formula>.]]></description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3302819</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Backhaul networks ; Cellular communication ; Combinatorial analysis ; Earth ; Earth stations ; Exclusion zones ; Geometry ; Interference ; Mathematical analysis ; Millimeter waves ; Optimization ; Radio spectrum management ; Regression ; satellite communication ; Satellite networks ; Satellites ; spectrum sharing ; Statistical analysis ; stochastic geometry ; Stochastic processes ; Transmitters</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c54e3b10f1ea3e84c548c83f0ff185279775d00acc344872a43d0f7e670a026d3</cites><orcidid>0000-0003-4827-1793 ; 0000-0001-7518-2783 ; 0000-0003-3685-7201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10221681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10221681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahman, Aniq Ur</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description><![CDATA[We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to <inline-formula><tex-math notation="LaTeX">\sim 30%</tex-math></inline-formula> at the expense of the data rate of the backhaul points degrading by <inline-formula><tex-math notation="LaTeX">\sim 2%</tex-math></inline-formula>.]]></description><subject>Approximation</subject><subject>Backhaul networks</subject><subject>Cellular communication</subject><subject>Combinatorial analysis</subject><subject>Earth</subject><subject>Earth stations</subject><subject>Exclusion zones</subject><subject>Geometry</subject><subject>Interference</subject><subject>Mathematical analysis</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Radio spectrum management</subject><subject>Regression</subject><subject>satellite communication</subject><subject>Satellite networks</subject><subject>Satellites</subject><subject>spectrum sharing</subject><subject>Statistical analysis</subject><subject>stochastic geometry</subject><subject>Stochastic processes</subject><subject>Transmitters</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAMhiMEEmPwAEgcInHusJO0TY9jjA1pgsPGOQqtIzpKO5JMDJ6eTtuBk_VL329bH2PXCCNEKO5W4-lyJEDIkZQgNBYnbIBpmidFBvKUDQBQJ4VI8ZxdhLDuo9JKDtjDpKNdHSK1JfHO8RV5TyH62jbcthVf2khNU0fizxS_O_8ReN3y-E5caD6b__L7nrpkZ842ga6Oc8heH6eryTxZvMyeJuNFUgqVxaRMFck3BIdkJWnVZ11q6cA51KnIizxPKwBbllIpnQurZAUupywHCyKr5JDdHvZufPe17d80627r2_6kEQUgFgBK9RQeqNJ3IXhyZuPrT-t_DILZyzJ7WWYvyxxl9Z2bQ6cmon-8EJhplH98d2N6</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Rahman, Aniq Ur</creator><creator>Kishk, Mustafa A.</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0003-3685-7201</orcidid></search><sort><creationdate>20231201</creationdate><title>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</title><author>Rahman, Aniq Ur ; Kishk, Mustafa A. ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c54e3b10f1ea3e84c548c83f0ff185279775d00acc344872a43d0f7e670a026d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Backhaul networks</topic><topic>Cellular communication</topic><topic>Combinatorial analysis</topic><topic>Earth</topic><topic>Earth stations</topic><topic>Exclusion zones</topic><topic>Geometry</topic><topic>Interference</topic><topic>Mathematical analysis</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Radio spectrum management</topic><topic>Regression</topic><topic>satellite communication</topic><topic>Satellite networks</topic><topic>Satellites</topic><topic>spectrum sharing</topic><topic>Statistical analysis</topic><topic>stochastic geometry</topic><topic>Stochastic processes</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Aniq Ur</creatorcontrib><creatorcontrib>Kishk, Mustafa A.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahman, Aniq Ur</au><au>Kishk, Mustafa A.</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract><![CDATA[We present a practical framework for maximizing the average data rates of terrestrial networks operating in the 28-GHz band while considering their coexistence with satellite networks. The 28-GHz mmWave band is licensed to fixed satellite services for Earth-to-space uplink transmissions, which are also used by the terrestrial cellular and backhaul networks for downlink operation. Our approach focuses on finding the optimal radii for exclusion zones, which are the areas where certain network elements are restricted from operating in the 28-GHz band. Through stochastic geometry, we derive the average data rate expressions for the terrestrial networks as functions of the exclusion zone radii of the Earth stations and the backhaul points. We then convert the discrete problem of frequency allocation into a continuous problem through Poisson point process approximation of the transmitters' locations. We perform logistic regression on the integral-form coverage probability expression to obtain closed-form approximation of the data rate expressions. This facilitates faster optimization, making our framework viable for deployment in frequency allocation systems, offering near-optimal results with lower complexity compared with combinatorial techniques. We improve the data rate of cellular users by up to <inline-formula><tex-math notation="LaTeX">\sim 30%</tex-math></inline-formula> at the expense of the data rate of the backhaul points degrading by <inline-formula><tex-math notation="LaTeX">\sim 2%</tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3302819</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0001-7518-2783</orcidid><orcidid>https://orcid.org/0000-0003-3685-7201</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-13 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_10221681 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Backhaul networks Cellular communication Combinatorial analysis Earth Earth stations Exclusion zones Geometry Interference Mathematical analysis Millimeter waves Optimization Radio spectrum management Regression satellite communication Satellite networks Satellites spectrum sharing Statistical analysis stochastic geometry Stochastic processes Transmitters |
title | Coexistence of Terrestrial and Satellite Networks in the 28 GHz Band |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20of%20Terrestrial%20and%20Satellite%20Networks%20in%20the%2028%20GHz%20Band&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Rahman,%20Aniq%20Ur&rft.date=2023-12-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3302819&rft_dat=%3Cproquest_RIE%3E2901190044%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901190044&rft_id=info:pmid/&rft_ieee_id=10221681&rfr_iscdi=true |