Achieving Maximum Urgency-Dependent Throughput in Random Access
Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communica...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2023-11, Vol.71 (11), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on communications |
container_volume | 71 |
creator | Zhang, Yijin Gong, Aoyu Deng, Lei Lo, Yuan-Hsun Lin, Yan Li, Jun |
description | Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined. |
doi_str_mv | 10.1109/TCOMM.2023.3305465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10218364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10218364</ieee_id><sourcerecordid>2890992579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6c_Uz2JKV-QktB2vOSbCdtitnE3UTsvze1PXgaeOd9ZuAh5JZCQinoh-V0MZ8nDBhPOAcplDwjIyplFkMm03MyAtAQqzTNLslVCDsAEMD5iDxO7LbC78ptonn-U9V9Ha38Bp3dx0_Yoluj66Ll1jf9Ztv2XVS56CN366aOJtZiCNfkosw_A96c5pisXp6X07d4tnh9n05msWVadTEKlGVZrnnOWaGyXFlWYMGH2CohVMGHPReMFTllNLUadYYoMVVUA9Oc8TG5P95tffPVY-jMrum9G14almnQmslUDy12bFnfhOCxNK2v6tzvDQVzEGX-RJmDKHMSNUB3R6hCxH8AoxlXgv8Cd9hkHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890992579</pqid></control><display><type>article</type><title>Achieving Maximum Urgency-Dependent Throughput in Random Access</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yijin ; Gong, Aoyu ; Deng, Lei ; Lo, Yuan-Hsun ; Lin, Yan ; Li, Jun</creator><creatorcontrib>Zhang, Yijin ; Gong, Aoyu ; Deng, Lei ; Lo, Yuan-Hsun ; Lin, Yan ; Li, Jun</creatorcontrib><description>Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3305465</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel models ; Complexity theory ; Decision theory ; delivery deadline ; Dynamic programming ; Internet of Things ; Markov processes ; Mobile communication ; Optimization ; Policies ; Protocols ; Random access ; stochastic optimal control ; Throughput ; Uplink ; urgency constraint</subject><ispartof>IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</citedby><cites>FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</cites><orcidid>0000-0002-6426-238X ; 0000-0003-4640-4935 ; 0000-0002-6239-2922 ; 0000-0002-1491-209X ; 0000-0002-0584-1146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10218364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10218364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yijin</creatorcontrib><creatorcontrib>Gong, Aoyu</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Lo, Yuan-Hsun</creatorcontrib><creatorcontrib>Lin, Yan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><title>Achieving Maximum Urgency-Dependent Throughput in Random Access</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined.</description><subject>Channel models</subject><subject>Complexity theory</subject><subject>Decision theory</subject><subject>delivery deadline</subject><subject>Dynamic programming</subject><subject>Internet of Things</subject><subject>Markov processes</subject><subject>Mobile communication</subject><subject>Optimization</subject><subject>Policies</subject><subject>Protocols</subject><subject>Random access</subject><subject>stochastic optimal control</subject><subject>Throughput</subject><subject>Uplink</subject><subject>urgency constraint</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6c_Uz2JKV-QktB2vOSbCdtitnE3UTsvze1PXgaeOd9ZuAh5JZCQinoh-V0MZ8nDBhPOAcplDwjIyplFkMm03MyAtAQqzTNLslVCDsAEMD5iDxO7LbC78ptonn-U9V9Ha38Bp3dx0_Yoluj66Ll1jf9Ztv2XVS56CN366aOJtZiCNfkosw_A96c5pisXp6X07d4tnh9n05msWVadTEKlGVZrnnOWaGyXFlWYMGH2CohVMGHPReMFTllNLUadYYoMVVUA9Oc8TG5P95tffPVY-jMrum9G14almnQmslUDy12bFnfhOCxNK2v6tzvDQVzEGX-RJmDKHMSNUB3R6hCxH8AoxlXgv8Cd9hkHA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Yijin</creator><creator>Gong, Aoyu</creator><creator>Deng, Lei</creator><creator>Lo, Yuan-Hsun</creator><creator>Lin, Yan</creator><creator>Li, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6426-238X</orcidid><orcidid>https://orcid.org/0000-0003-4640-4935</orcidid><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-1491-209X</orcidid><orcidid>https://orcid.org/0000-0002-0584-1146</orcidid></search><sort><creationdate>20231101</creationdate><title>Achieving Maximum Urgency-Dependent Throughput in Random Access</title><author>Zhang, Yijin ; Gong, Aoyu ; Deng, Lei ; Lo, Yuan-Hsun ; Lin, Yan ; Li, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channel models</topic><topic>Complexity theory</topic><topic>Decision theory</topic><topic>delivery deadline</topic><topic>Dynamic programming</topic><topic>Internet of Things</topic><topic>Markov processes</topic><topic>Mobile communication</topic><topic>Optimization</topic><topic>Policies</topic><topic>Protocols</topic><topic>Random access</topic><topic>stochastic optimal control</topic><topic>Throughput</topic><topic>Uplink</topic><topic>urgency constraint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yijin</creatorcontrib><creatorcontrib>Gong, Aoyu</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Lo, Yuan-Hsun</creatorcontrib><creatorcontrib>Lin, Yan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yijin</au><au>Gong, Aoyu</au><au>Deng, Lei</au><au>Lo, Yuan-Hsun</au><au>Lin, Yan</au><au>Li, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Maximum Urgency-Dependent Throughput in Random Access</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>71</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3305465</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6426-238X</orcidid><orcidid>https://orcid.org/0000-0003-4640-4935</orcidid><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-1491-209X</orcidid><orcidid>https://orcid.org/0000-0002-0584-1146</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_10218364 |
source | IEEE Electronic Library (IEL) |
subjects | Channel models Complexity theory Decision theory delivery deadline Dynamic programming Internet of Things Markov processes Mobile communication Optimization Policies Protocols Random access stochastic optimal control Throughput Uplink urgency constraint |
title | Achieving Maximum Urgency-Dependent Throughput in Random Access |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Maximum%20Urgency-Dependent%20Throughput%20in%20Random%20Access&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Zhang,%20Yijin&rft.date=2023-11-01&rft.volume=71&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3305465&rft_dat=%3Cproquest_RIE%3E2890992579%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890992579&rft_id=info:pmid/&rft_ieee_id=10218364&rfr_iscdi=true |