Achieving Maximum Urgency-Dependent Throughput in Random Access

Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2023-11, Vol.71 (11), p.1-1
Hauptverfasser: Zhang, Yijin, Gong, Aoyu, Deng, Lei, Lo, Yuan-Hsun, Lin, Yan, Li, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on communications
container_volume 71
creator Zhang, Yijin
Gong, Aoyu
Deng, Lei
Lo, Yuan-Hsun
Lin, Yan
Li, Jun
description Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined.
doi_str_mv 10.1109/TCOMM.2023.3305465
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10218364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10218364</ieee_id><sourcerecordid>2890992579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6c_Uz2JKV-QktB2vOSbCdtitnE3UTsvze1PXgaeOd9ZuAh5JZCQinoh-V0MZ8nDBhPOAcplDwjIyplFkMm03MyAtAQqzTNLslVCDsAEMD5iDxO7LbC78ptonn-U9V9Ha38Bp3dx0_Yoluj66Ll1jf9Ztv2XVS56CN366aOJtZiCNfkosw_A96c5pisXp6X07d4tnh9n05msWVadTEKlGVZrnnOWaGyXFlWYMGH2CohVMGHPReMFTllNLUadYYoMVVUA9Oc8TG5P95tffPVY-jMrum9G14almnQmslUDy12bFnfhOCxNK2v6tzvDQVzEGX-RJmDKHMSNUB3R6hCxH8AoxlXgv8Cd9hkHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890992579</pqid></control><display><type>article</type><title>Achieving Maximum Urgency-Dependent Throughput in Random Access</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yijin ; Gong, Aoyu ; Deng, Lei ; Lo, Yuan-Hsun ; Lin, Yan ; Li, Jun</creator><creatorcontrib>Zhang, Yijin ; Gong, Aoyu ; Deng, Lei ; Lo, Yuan-Hsun ; Lin, Yan ; Li, Jun</creatorcontrib><description>Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3305465</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel models ; Complexity theory ; Decision theory ; delivery deadline ; Dynamic programming ; Internet of Things ; Markov processes ; Mobile communication ; Optimization ; Policies ; Protocols ; Random access ; stochastic optimal control ; Throughput ; Uplink ; urgency constraint</subject><ispartof>IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</citedby><cites>FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</cites><orcidid>0000-0002-6426-238X ; 0000-0003-4640-4935 ; 0000-0002-6239-2922 ; 0000-0002-1491-209X ; 0000-0002-0584-1146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10218364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10218364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yijin</creatorcontrib><creatorcontrib>Gong, Aoyu</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Lo, Yuan-Hsun</creatorcontrib><creatorcontrib>Lin, Yan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><title>Achieving Maximum Urgency-Dependent Throughput in Random Access</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined.</description><subject>Channel models</subject><subject>Complexity theory</subject><subject>Decision theory</subject><subject>delivery deadline</subject><subject>Dynamic programming</subject><subject>Internet of Things</subject><subject>Markov processes</subject><subject>Mobile communication</subject><subject>Optimization</subject><subject>Policies</subject><subject>Protocols</subject><subject>Random access</subject><subject>stochastic optimal control</subject><subject>Throughput</subject><subject>Uplink</subject><subject>urgency constraint</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6c_Uz2JKV-QktB2vOSbCdtitnE3UTsvze1PXgaeOd9ZuAh5JZCQinoh-V0MZ8nDBhPOAcplDwjIyplFkMm03MyAtAQqzTNLslVCDsAEMD5iDxO7LbC78ptonn-U9V9Ha38Bp3dx0_Yoluj66Ll1jf9Ztv2XVS56CN366aOJtZiCNfkosw_A96c5pisXp6X07d4tnh9n05msWVadTEKlGVZrnnOWaGyXFlWYMGH2CohVMGHPReMFTllNLUadYYoMVVUA9Oc8TG5P95tffPVY-jMrum9G14almnQmslUDy12bFnfhOCxNK2v6tzvDQVzEGX-RJmDKHMSNUB3R6hCxH8AoxlXgv8Cd9hkHA</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Yijin</creator><creator>Gong, Aoyu</creator><creator>Deng, Lei</creator><creator>Lo, Yuan-Hsun</creator><creator>Lin, Yan</creator><creator>Li, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6426-238X</orcidid><orcidid>https://orcid.org/0000-0003-4640-4935</orcidid><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-1491-209X</orcidid><orcidid>https://orcid.org/0000-0002-0584-1146</orcidid></search><sort><creationdate>20231101</creationdate><title>Achieving Maximum Urgency-Dependent Throughput in Random Access</title><author>Zhang, Yijin ; Gong, Aoyu ; Deng, Lei ; Lo, Yuan-Hsun ; Lin, Yan ; Li, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-e4e5fffd3a32b68a6c2beb3e4ec6446b34e53422ba1217c9e98ee5e7619029323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channel models</topic><topic>Complexity theory</topic><topic>Decision theory</topic><topic>delivery deadline</topic><topic>Dynamic programming</topic><topic>Internet of Things</topic><topic>Markov processes</topic><topic>Mobile communication</topic><topic>Optimization</topic><topic>Policies</topic><topic>Protocols</topic><topic>Random access</topic><topic>stochastic optimal control</topic><topic>Throughput</topic><topic>Uplink</topic><topic>urgency constraint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yijin</creatorcontrib><creatorcontrib>Gong, Aoyu</creatorcontrib><creatorcontrib>Deng, Lei</creatorcontrib><creatorcontrib>Lo, Yuan-Hsun</creatorcontrib><creatorcontrib>Lin, Yan</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yijin</au><au>Gong, Aoyu</au><au>Deng, Lei</au><au>Lo, Yuan-Hsun</au><au>Lin, Yan</au><au>Li, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Maximum Urgency-Dependent Throughput in Random Access</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>71</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Designing efficient random access is a vital problem for urgency-constrained packet delivery in uplink Internet of Things (IoT), which has not been investigated in depth so far. In this paper, we focus on unpredictable frame-synchronized traffic, which captures a number of scenarios in IoT communications, and generalize prior studies on this issue by considering a general ALOHA-like protocol, a general single-packet reception (SPR) channel, urgency-dependent throughput (UDT) based on a general urgency function, and the dynamic programming optimality. With a complete knowledge of the number of active users, we use the theory of Markov Decision Process (MDP) to explicitly obtain optimal policies for maximizing the UDT, and prove that a myopic policy is in general optimal. With an incomplete knowledge of the number of active users, we use the theory of Partially Observable MDP (POMDP) to seek optimal policies, and show that a myopic policy is in general not optimal by presenting a counterexample. Because of the prohibitive complexity to obtain optimal or near-optimal policies for this case, we propose two practical policies that utilize the inherent property of our MDP framework and channel model. Simulation results show that both outperform other alternatives. The robustness under relaxed system settings is also examined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3305465</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6426-238X</orcidid><orcidid>https://orcid.org/0000-0003-4640-4935</orcidid><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-1491-209X</orcidid><orcidid>https://orcid.org/0000-0002-0584-1146</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2023-11, Vol.71 (11), p.1-1
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_10218364
source IEEE Electronic Library (IEL)
subjects Channel models
Complexity theory
Decision theory
delivery deadline
Dynamic programming
Internet of Things
Markov processes
Mobile communication
Optimization
Policies
Protocols
Random access
stochastic optimal control
Throughput
Uplink
urgency constraint
title Achieving Maximum Urgency-Dependent Throughput in Random Access
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Maximum%20Urgency-Dependent%20Throughput%20in%20Random%20Access&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Zhang,%20Yijin&rft.date=2023-11-01&rft.volume=71&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3305465&rft_dat=%3Cproquest_RIE%3E2890992579%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890992579&rft_id=info:pmid/&rft_ieee_id=10218364&rfr_iscdi=true