Tea Buds Detection in Complex Background Based on Improved YOLOv7
Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.88295-88304 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88304 |
---|---|
container_issue | |
container_start_page | 88295 |
container_title | IEEE access |
container_volume | 11 |
creator | Meng, Junquan Kang, Feng Wang, Yaxiong Tong, Siyuan Zhang, Chenxi Chen, Chongchong |
description | Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking. |
doi_str_mv | 10.1109/ACCESS.2023.3305405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10217818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10217818</ieee_id><doaj_id>oai_doaj_org_article_f697d6225d4646579e0011da1fead06f</doaj_id><sourcerecordid>2857104755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</originalsourceid><addsrcrecordid>eNpNUE1PAjEQ3RhNJMgv0MMmnsHO9mt7hBWVhIQDePDUlHaWLALF7kL031tcYpjDzMt03pvpS5J7IAMAop6GRTGezwcZyeiAUsIZ4VdJJwOh-pRTcX2Bb5NeXa9JjDy2uOwkwwWadHRwdfqMDdqm8ru02qWF3-43-J2OjP1cBX_YuQhrdGl8nmz3wR8j_phNZ0d5l9yUZlNj71y7yfvLeFG89aez10kxnPYtI6qJWS5BWZUxMEblghjKlAG5tJZLWSokhijJCadMCiCSOcqWEh2gzVUJSLvJpNV13qz1PlRbE360N5X-a_iw0iY0ld2gLoWSTmQZd0wwwWUUJwDOQInGEVFGrcdWK_7k64B1o9f-EHbxfJ3lXAJhkvM4RdspG3xdByz_twLRJ-t1a70-Wa_P1kfWQ8uqEPGCkYHMIae_gYd8XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857104755</pqid></control><display><type>article</type><title>Tea Buds Detection in Complex Background Based on Improved YOLOv7</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Meng, Junquan ; Kang, Feng ; Wang, Yaxiong ; Tong, Siyuan ; Zhang, Chenxi ; Chen, Chongchong</creator><creatorcontrib>Meng, Junquan ; Kang, Feng ; Wang, Yaxiong ; Tong, Siyuan ; Zhang, Chenxi ; Chen, Chongchong</creatorcontrib><description>Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3305405</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Attention module ; Convolution ; Crops ; Deep learning ; Feature extraction ; Image segmentation ; Modules ; Target detection ; Target recognition ; tea buds ; Training ; YOLOv7</subject><ispartof>IEEE access, 2023, Vol.11, p.88295-88304</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</citedby><cites>FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</cites><orcidid>0000-0002-9845-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10217818$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Meng, Junquan</creatorcontrib><creatorcontrib>Kang, Feng</creatorcontrib><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Tong, Siyuan</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Chen, Chongchong</creatorcontrib><title>Tea Buds Detection in Complex Background Based on Improved YOLOv7</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking.</description><subject>Algorithms</subject><subject>Attention module</subject><subject>Convolution</subject><subject>Crops</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Modules</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>tea buds</subject><subject>Training</subject><subject>YOLOv7</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PAjEQ3RhNJMgv0MMmnsHO9mt7hBWVhIQDePDUlHaWLALF7kL031tcYpjDzMt03pvpS5J7IAMAop6GRTGezwcZyeiAUsIZ4VdJJwOh-pRTcX2Bb5NeXa9JjDy2uOwkwwWadHRwdfqMDdqm8ru02qWF3-43-J2OjP1cBX_YuQhrdGl8nmz3wR8j_phNZ0d5l9yUZlNj71y7yfvLeFG89aez10kxnPYtI6qJWS5BWZUxMEblghjKlAG5tJZLWSokhijJCadMCiCSOcqWEh2gzVUJSLvJpNV13qz1PlRbE360N5X-a_iw0iY0ld2gLoWSTmQZd0wwwWUUJwDOQInGEVFGrcdWK_7k64B1o9f-EHbxfJ3lXAJhkvM4RdspG3xdByz_twLRJ-t1a70-Wa_P1kfWQ8uqEPGCkYHMIae_gYd8XA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Meng, Junquan</creator><creator>Kang, Feng</creator><creator>Wang, Yaxiong</creator><creator>Tong, Siyuan</creator><creator>Zhang, Chenxi</creator><creator>Chen, Chongchong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9845-3790</orcidid></search><sort><creationdate>2023</creationdate><title>Tea Buds Detection in Complex Background Based on Improved YOLOv7</title><author>Meng, Junquan ; Kang, Feng ; Wang, Yaxiong ; Tong, Siyuan ; Zhang, Chenxi ; Chen, Chongchong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attention module</topic><topic>Convolution</topic><topic>Crops</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Modules</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>tea buds</topic><topic>Training</topic><topic>YOLOv7</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Junquan</creatorcontrib><creatorcontrib>Kang, Feng</creatorcontrib><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Tong, Siyuan</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Chen, Chongchong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Junquan</au><au>Kang, Feng</au><au>Wang, Yaxiong</au><au>Tong, Siyuan</au><au>Zhang, Chenxi</au><au>Chen, Chongchong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tea Buds Detection in Complex Background Based on Improved YOLOv7</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>88295</spage><epage>88304</epage><pages>88295-88304</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3305405</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9845-3790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.88295-88304 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10217818 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Attention module Convolution Crops Deep learning Feature extraction Image segmentation Modules Target detection Target recognition tea buds Training YOLOv7 |
title | Tea Buds Detection in Complex Background Based on Improved YOLOv7 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tea%20Buds%20Detection%20in%20Complex%20Background%20Based%20on%20Improved%20YOLOv7&rft.jtitle=IEEE%20access&rft.au=Meng,%20Junquan&rft.date=2023&rft.volume=11&rft.spage=88295&rft.epage=88304&rft.pages=88295-88304&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3305405&rft_dat=%3Cproquest_ieee_%3E2857104755%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857104755&rft_id=info:pmid/&rft_ieee_id=10217818&rft_doaj_id=oai_doaj_org_article_f697d6225d4646579e0011da1fead06f&rfr_iscdi=true |