Tea Buds Detection in Complex Background Based on Improved YOLOv7

Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.88295-88304
Hauptverfasser: Meng, Junquan, Kang, Feng, Wang, Yaxiong, Tong, Siyuan, Zhang, Chenxi, Chen, Chongchong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88304
container_issue
container_start_page 88295
container_title IEEE access
container_volume 11
creator Meng, Junquan
Kang, Feng
Wang, Yaxiong
Tong, Siyuan
Zhang, Chenxi
Chen, Chongchong
description Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking.
doi_str_mv 10.1109/ACCESS.2023.3305405
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10217818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10217818</ieee_id><doaj_id>oai_doaj_org_article_f697d6225d4646579e0011da1fead06f</doaj_id><sourcerecordid>2857104755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</originalsourceid><addsrcrecordid>eNpNUE1PAjEQ3RhNJMgv0MMmnsHO9mt7hBWVhIQDePDUlHaWLALF7kL031tcYpjDzMt03pvpS5J7IAMAop6GRTGezwcZyeiAUsIZ4VdJJwOh-pRTcX2Bb5NeXa9JjDy2uOwkwwWadHRwdfqMDdqm8ru02qWF3-43-J2OjP1cBX_YuQhrdGl8nmz3wR8j_phNZ0d5l9yUZlNj71y7yfvLeFG89aez10kxnPYtI6qJWS5BWZUxMEblghjKlAG5tJZLWSokhijJCadMCiCSOcqWEh2gzVUJSLvJpNV13qz1PlRbE360N5X-a_iw0iY0ld2gLoWSTmQZd0wwwWUUJwDOQInGEVFGrcdWK_7k64B1o9f-EHbxfJ3lXAJhkvM4RdspG3xdByz_twLRJ-t1a70-Wa_P1kfWQ8uqEPGCkYHMIae_gYd8XA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2857104755</pqid></control><display><type>article</type><title>Tea Buds Detection in Complex Background Based on Improved YOLOv7</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Meng, Junquan ; Kang, Feng ; Wang, Yaxiong ; Tong, Siyuan ; Zhang, Chenxi ; Chen, Chongchong</creator><creatorcontrib>Meng, Junquan ; Kang, Feng ; Wang, Yaxiong ; Tong, Siyuan ; Zhang, Chenxi ; Chen, Chongchong</creatorcontrib><description>Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3305405</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Attention module ; Convolution ; Crops ; Deep learning ; Feature extraction ; Image segmentation ; Modules ; Target detection ; Target recognition ; tea buds ; Training ; YOLOv7</subject><ispartof>IEEE access, 2023, Vol.11, p.88295-88304</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</citedby><cites>FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</cites><orcidid>0000-0002-9845-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10217818$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Meng, Junquan</creatorcontrib><creatorcontrib>Kang, Feng</creatorcontrib><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Tong, Siyuan</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Chen, Chongchong</creatorcontrib><title>Tea Buds Detection in Complex Background Based on Improved YOLOv7</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking.</description><subject>Algorithms</subject><subject>Attention module</subject><subject>Convolution</subject><subject>Crops</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Modules</subject><subject>Target detection</subject><subject>Target recognition</subject><subject>tea buds</subject><subject>Training</subject><subject>YOLOv7</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PAjEQ3RhNJMgv0MMmnsHO9mt7hBWVhIQDePDUlHaWLALF7kL031tcYpjDzMt03pvpS5J7IAMAop6GRTGezwcZyeiAUsIZ4VdJJwOh-pRTcX2Bb5NeXa9JjDy2uOwkwwWadHRwdfqMDdqm8ru02qWF3-43-J2OjP1cBX_YuQhrdGl8nmz3wR8j_phNZ0d5l9yUZlNj71y7yfvLeFG89aez10kxnPYtI6qJWS5BWZUxMEblghjKlAG5tJZLWSokhijJCadMCiCSOcqWEh2gzVUJSLvJpNV13qz1PlRbE360N5X-a_iw0iY0ld2gLoWSTmQZd0wwwWUUJwDOQInGEVFGrcdWK_7k64B1o9f-EHbxfJ3lXAJhkvM4RdspG3xdByz_twLRJ-t1a70-Wa_P1kfWQ8uqEPGCkYHMIae_gYd8XA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Meng, Junquan</creator><creator>Kang, Feng</creator><creator>Wang, Yaxiong</creator><creator>Tong, Siyuan</creator><creator>Zhang, Chenxi</creator><creator>Chen, Chongchong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9845-3790</orcidid></search><sort><creationdate>2023</creationdate><title>Tea Buds Detection in Complex Background Based on Improved YOLOv7</title><author>Meng, Junquan ; Kang, Feng ; Wang, Yaxiong ; Tong, Siyuan ; Zhang, Chenxi ; Chen, Chongchong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c47b19c9241aa9860a349a17bcc577f9e0a09750534761074d34b7ed1ec89f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attention module</topic><topic>Convolution</topic><topic>Crops</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Modules</topic><topic>Target detection</topic><topic>Target recognition</topic><topic>tea buds</topic><topic>Training</topic><topic>YOLOv7</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Junquan</creatorcontrib><creatorcontrib>Kang, Feng</creatorcontrib><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Tong, Siyuan</creatorcontrib><creatorcontrib>Zhang, Chenxi</creatorcontrib><creatorcontrib>Chen, Chongchong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Junquan</au><au>Kang, Feng</au><au>Wang, Yaxiong</au><au>Tong, Siyuan</au><au>Zhang, Chenxi</au><au>Chen, Chongchong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tea Buds Detection in Complex Background Based on Improved YOLOv7</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>88295</spage><epage>88304</epage><pages>88295-88304</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aiming at the problem that the color of tea buds is highly similar to the background in complex scenes and it is difficult to identify the buds, this study proposed an improved YOLOv7 algorithm by replacing the original convolution blocks with Depth Separable Convolution (DS Conv) blocks, and adding Convolutional Block Attention Modules (CBAM) and Coordinate Attention (CA) modules. The method improved mean Average Precision (mAP) by 1.28% and mean Recall (mR) rate by 2.92%, the final mAP and mR reached 96.70% and 93.88%, respectively, and 30.62 Frame Per Second (FPS) of the improved model meets the requirements of real-time detection. The results show that the detection accuracy of the improved YOLOv7 algorithm for tea buds was higher than that of other target detection algorithms, and the detecting performance is not significantly affected by the light conditions, and the recognition accuracy of tea buds at each growing period was excellent and balanced. This study provides experience for the realization of intelligent tea picking.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3305405</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9845-3790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.88295-88304
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10217818
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Attention module
Convolution
Crops
Deep learning
Feature extraction
Image segmentation
Modules
Target detection
Target recognition
tea buds
Training
YOLOv7
title Tea Buds Detection in Complex Background Based on Improved YOLOv7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tea%20Buds%20Detection%20in%20Complex%20Background%20Based%20on%20Improved%20YOLOv7&rft.jtitle=IEEE%20access&rft.au=Meng,%20Junquan&rft.date=2023&rft.volume=11&rft.spage=88295&rft.epage=88304&rft.pages=88295-88304&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3305405&rft_dat=%3Cproquest_ieee_%3E2857104755%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2857104755&rft_id=info:pmid/&rft_ieee_id=10217818&rft_doaj_id=oai_doaj_org_article_f697d6225d4646579e0011da1fead06f&rfr_iscdi=true