RLPGB-Net: Reinforcement Learning of Feature Fusion and Global Context Boundary Attention for Infrared Dim Small Target Detection

In infrared scenes, humans can easily observe objects in the scene with their eyes, even dim ones. To make the robot have the same visual ability, this paper proposes a pyramid-feature fusion target detection network, called RLPGB-Net, which combines reinforcement learning with aerial targets in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Wang, Zhe, Zang, Tao, Fu, Zhiling, Yang, Hai, Du, Wenli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Wang, Zhe
Zang, Tao
Fu, Zhiling
Yang, Hai
Du, Wenli
description In infrared scenes, humans can easily observe objects in the scene with their eyes, even dim ones. To make the robot have the same visual ability, this paper proposes a pyramid-feature fusion target detection network, called RLPGB-Net, which combines reinforcement learning with aerial targets in the infrared scene. It makes use of the powerful decision-making ability of reinforcement learning to give corresponding weights to the extracted features and highlight the significant features of infrared dim small targets. In reinforcement learning, we use priori strategy guidance and long-term training methods to train weight-regulating agents. To eliminate the local influence on the detection results, such as bright interference points similar to the target, and to solve the problem of dim target detection effectively, the global context boundary attention module is introduced to eliminate the disadvantage of local comparison by using the global characteristics of different dimensions. At the same time, it can prevent the edge information of the refined target from being submerged in the background. Experimental results on SAITD and SIRST data sets show the effectiveness of the proposed method.
doi_str_mv 10.1109/TGRS.2023.3304755
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10215504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10215504</ieee_id><sourcerecordid>2855277739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-aeff025935c3304bab71c3a7b532a5c9ace679d85c9c7c347545ab450e9aa1af3</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhoMoWKs_QPAQ8Lw1H5um8VZbW4WiUut5mU1nZWWb1GwW9Og_N0s9eJo5PO8M8wwhl5yNOGfmZrNcv44EE3IkJcu1UkdkwJWaZGyc58dkwLgZZ2JixCk5a9sPxniuuB6Qn_XqZXmXPWG8pWusXeWDxR26SFcIwdXunfqKLhBiF5Auurb2joLb0mXjS2jozLuIX5He-c5tIXzTaYwp3VNpFH10VYCAWzqvd_R1B01DNxDeMdI5RrQ9d05OKmhavPirQ_K2uN_MHrLV8_JxNl1lVpg8ZoBVxYQyUtn-whJKza0EXSopQFkDFsfabCeptdrKpCBXUOaKoQHgUMkhuT7M3Qf_2WEbiw_fBZdWFmKilNBaS5MofqBs8G0bsCr2od6lwwrOit500ZsuetPFn-mUuTpkakT8x4v0AJbLXy1Nexs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2855277739</pqid></control><display><type>article</type><title>RLPGB-Net: Reinforcement Learning of Feature Fusion and Global Context Boundary Attention for Infrared Dim Small Target Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zhe ; Zang, Tao ; Fu, Zhiling ; Yang, Hai ; Du, Wenli</creator><creatorcontrib>Wang, Zhe ; Zang, Tao ; Fu, Zhiling ; Yang, Hai ; Du, Wenli</creatorcontrib><description>In infrared scenes, humans can easily observe objects in the scene with their eyes, even dim ones. To make the robot have the same visual ability, this paper proposes a pyramid-feature fusion target detection network, called RLPGB-Net, which combines reinforcement learning with aerial targets in the infrared scene. It makes use of the powerful decision-making ability of reinforcement learning to give corresponding weights to the extracted features and highlight the significant features of infrared dim small targets. In reinforcement learning, we use priori strategy guidance and long-term training methods to train weight-regulating agents. To eliminate the local influence on the detection results, such as bright interference points similar to the target, and to solve the problem of dim target detection effectively, the global context boundary attention module is introduced to eliminate the disadvantage of local comparison by using the global characteristics of different dimensions. At the same time, it can prevent the edge information of the refined target from being submerged in the background. Experimental results on SAITD and SIRST data sets show the effectiveness of the proposed method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3304755</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerial targets ; Context ; Decision making ; Deep learning ; Detection ; Feature extraction ; global context boundary attention ; infrared dim target ; Learning ; Object detection ; pyramid feature fusion ; Reinforcement ; Reinforcement learning ; Semantics ; Target detection ; Tensors ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-aeff025935c3304bab71c3a7b532a5c9ace679d85c9c7c347545ab450e9aa1af3</citedby><cites>FETCH-LOGICAL-c294t-aeff025935c3304bab71c3a7b532a5c9ace679d85c9c7c347545ab450e9aa1af3</cites><orcidid>0000-0002-3759-2041 ; 0000-0002-1161-4337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10215504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10215504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Zang, Tao</creatorcontrib><creatorcontrib>Fu, Zhiling</creatorcontrib><creatorcontrib>Yang, Hai</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><title>RLPGB-Net: Reinforcement Learning of Feature Fusion and Global Context Boundary Attention for Infrared Dim Small Target Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In infrared scenes, humans can easily observe objects in the scene with their eyes, even dim ones. To make the robot have the same visual ability, this paper proposes a pyramid-feature fusion target detection network, called RLPGB-Net, which combines reinforcement learning with aerial targets in the infrared scene. It makes use of the powerful decision-making ability of reinforcement learning to give corresponding weights to the extracted features and highlight the significant features of infrared dim small targets. In reinforcement learning, we use priori strategy guidance and long-term training methods to train weight-regulating agents. To eliminate the local influence on the detection results, such as bright interference points similar to the target, and to solve the problem of dim target detection effectively, the global context boundary attention module is introduced to eliminate the disadvantage of local comparison by using the global characteristics of different dimensions. At the same time, it can prevent the edge information of the refined target from being submerged in the background. Experimental results on SAITD and SIRST data sets show the effectiveness of the proposed method.</description><subject>Aerial targets</subject><subject>Context</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>global context boundary attention</subject><subject>infrared dim target</subject><subject>Learning</subject><subject>Object detection</subject><subject>pyramid feature fusion</subject><subject>Reinforcement</subject><subject>Reinforcement learning</subject><subject>Semantics</subject><subject>Target detection</subject><subject>Tensors</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkU1LAzEQhoMoWKs_QPAQ8Lw1H5um8VZbW4WiUut5mU1nZWWb1GwW9Og_N0s9eJo5PO8M8wwhl5yNOGfmZrNcv44EE3IkJcu1UkdkwJWaZGyc58dkwLgZZ2JixCk5a9sPxniuuB6Qn_XqZXmXPWG8pWusXeWDxR26SFcIwdXunfqKLhBiF5Auurb2joLb0mXjS2jozLuIX5He-c5tIXzTaYwp3VNpFH10VYCAWzqvd_R1B01DNxDeMdI5RrQ9d05OKmhavPirQ_K2uN_MHrLV8_JxNl1lVpg8ZoBVxYQyUtn-whJKza0EXSopQFkDFsfabCeptdrKpCBXUOaKoQHgUMkhuT7M3Qf_2WEbiw_fBZdWFmKilNBaS5MofqBs8G0bsCr2od6lwwrOit500ZsuetPFn-mUuTpkakT8x4v0AJbLXy1Nexs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Zhe</creator><creator>Zang, Tao</creator><creator>Fu, Zhiling</creator><creator>Yang, Hai</creator><creator>Du, Wenli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3759-2041</orcidid><orcidid>https://orcid.org/0000-0002-1161-4337</orcidid></search><sort><creationdate>20230101</creationdate><title>RLPGB-Net: Reinforcement Learning of Feature Fusion and Global Context Boundary Attention for Infrared Dim Small Target Detection</title><author>Wang, Zhe ; Zang, Tao ; Fu, Zhiling ; Yang, Hai ; Du, Wenli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-aeff025935c3304bab71c3a7b532a5c9ace679d85c9c7c347545ab450e9aa1af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerial targets</topic><topic>Context</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>global context boundary attention</topic><topic>infrared dim target</topic><topic>Learning</topic><topic>Object detection</topic><topic>pyramid feature fusion</topic><topic>Reinforcement</topic><topic>Reinforcement learning</topic><topic>Semantics</topic><topic>Target detection</topic><topic>Tensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Zang, Tao</creatorcontrib><creatorcontrib>Fu, Zhiling</creatorcontrib><creatorcontrib>Yang, Hai</creatorcontrib><creatorcontrib>Du, Wenli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhe</au><au>Zang, Tao</au><au>Fu, Zhiling</au><au>Yang, Hai</au><au>Du, Wenli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RLPGB-Net: Reinforcement Learning of Feature Fusion and Global Context Boundary Attention for Infrared Dim Small Target Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In infrared scenes, humans can easily observe objects in the scene with their eyes, even dim ones. To make the robot have the same visual ability, this paper proposes a pyramid-feature fusion target detection network, called RLPGB-Net, which combines reinforcement learning with aerial targets in the infrared scene. It makes use of the powerful decision-making ability of reinforcement learning to give corresponding weights to the extracted features and highlight the significant features of infrared dim small targets. In reinforcement learning, we use priori strategy guidance and long-term training methods to train weight-regulating agents. To eliminate the local influence on the detection results, such as bright interference points similar to the target, and to solve the problem of dim target detection effectively, the global context boundary attention module is introduced to eliminate the disadvantage of local comparison by using the global characteristics of different dimensions. At the same time, it can prevent the edge information of the refined target from being submerged in the background. Experimental results on SAITD and SIRST data sets show the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3304755</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3759-2041</orcidid><orcidid>https://orcid.org/0000-0002-1161-4337</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10215504
source IEEE Electronic Library (IEL)
subjects Aerial targets
Context
Decision making
Deep learning
Detection
Feature extraction
global context boundary attention
infrared dim target
Learning
Object detection
pyramid feature fusion
Reinforcement
Reinforcement learning
Semantics
Target detection
Tensors
Training
title RLPGB-Net: Reinforcement Learning of Feature Fusion and Global Context Boundary Attention for Infrared Dim Small Target Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RLPGB-Net:%20Reinforcement%20Learning%20of%20Feature%20Fusion%20and%20Global%20Context%20Boundary%20Attention%20for%20Infrared%20Dim%20Small%20Target%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Zhe&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3304755&rft_dat=%3Cproquest_RIE%3E2855277739%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2855277739&rft_id=info:pmid/&rft_ieee_id=10215504&rfr_iscdi=true