Logarithmically larger deletion codes of all distances

The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Leven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-01, Vol.70 (1), p.1-1
Hauptverfasser: Alon, Noga, Bourla, Gabriela, Graham, Ben, He, Xiaoyu, Kravitz, Noah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on information theory
container_volume 70
creator Alon, Noga
Bourla, Gabriela
Graham, Ben
He, Xiaoyu
Kravitz, Noah
description The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.
doi_str_mv 10.1109/TIT.2023.3304565
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10214606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214606</ieee_id><sourcerecordid>2906590010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEqWwMzBEYk45P2OPqOJRKRJLmS3Hj5IqjYudDv33uGoHptPpvnt9CD1iWGAM6mW9Wi8IELqgFBgX_ArNMOdNrQRn12gGgGWtGJO36C7nbUkZx2SGRBs3JvXTz663ZhiO1WDSxqfK-cFPfRwrG53PVQxVqVauz5MZrc_36CaYIfuHS5yj7_e39fKzbr8-VsvXtrZEkan2wkLHnCWkMZKWU4A1hmIneOiktNZZY6lwjDWOBRmU6yRQEVSBQwEpnaPn89x9ir8Hnye9jYc0lpWaKBBclUegUHCmbIo5Jx_0PvU7k44agz7Z0cWOPtnRFzul5enc0nvv_-EEMwGC_gER6WAL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906590010</pqid></control><display><type>article</type><title>Logarithmically larger deletion codes of all distances</title><source>IEEE Xplore</source><creator>Alon, Noga ; Bourla, Gabriela ; Graham, Ben ; He, Xiaoyu ; Kravitz, Noah</creator><creatorcontrib>Alon, Noga ; Bourla, Gabriela ; Graham, Ben ; He, Xiaoyu ; Kravitz, Noah</creatorcontrib><description>The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3304565</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Deletion ; Deletion codes ; Electronic mail ; Indexes ; longest common subsequence ; Mathematics ; probabilistic combinatorics ; Synchronization ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2024-01, Vol.70 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</citedby><cites>FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</cites><orcidid>0000-0001-8506-342X ; 0000-0003-1332-4883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10214606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Bourla, Gabriela</creatorcontrib><creatorcontrib>Graham, Ben</creatorcontrib><creatorcontrib>He, Xiaoyu</creatorcontrib><creatorcontrib>Kravitz, Noah</creatorcontrib><title>Logarithmically larger deletion codes of all distances</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.</description><subject>Codes</subject><subject>Deletion</subject><subject>Deletion codes</subject><subject>Electronic mail</subject><subject>Indexes</subject><subject>longest common subsequence</subject><subject>Mathematics</subject><subject>probabilistic combinatorics</subject><subject>Synchronization</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQgC0EEqWwMzBEYk45P2OPqOJRKRJLmS3Hj5IqjYudDv33uGoHptPpvnt9CD1iWGAM6mW9Wi8IELqgFBgX_ArNMOdNrQRn12gGgGWtGJO36C7nbUkZx2SGRBs3JvXTz663ZhiO1WDSxqfK-cFPfRwrG53PVQxVqVauz5MZrc_36CaYIfuHS5yj7_e39fKzbr8-VsvXtrZEkan2wkLHnCWkMZKWU4A1hmIneOiktNZZY6lwjDWOBRmU6yRQEVSBQwEpnaPn89x9ir8Hnye9jYc0lpWaKBBclUegUHCmbIo5Jx_0PvU7k44agz7Z0cWOPtnRFzul5enc0nvv_-EEMwGC_gER6WAL</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Alon, Noga</creator><creator>Bourla, Gabriela</creator><creator>Graham, Ben</creator><creator>He, Xiaoyu</creator><creator>Kravitz, Noah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8506-342X</orcidid><orcidid>https://orcid.org/0000-0003-1332-4883</orcidid></search><sort><creationdate>20240101</creationdate><title>Logarithmically larger deletion codes of all distances</title><author>Alon, Noga ; Bourla, Gabriela ; Graham, Ben ; He, Xiaoyu ; Kravitz, Noah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Deletion</topic><topic>Deletion codes</topic><topic>Electronic mail</topic><topic>Indexes</topic><topic>longest common subsequence</topic><topic>Mathematics</topic><topic>probabilistic combinatorics</topic><topic>Synchronization</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Bourla, Gabriela</creatorcontrib><creatorcontrib>Graham, Ben</creatorcontrib><creatorcontrib>He, Xiaoyu</creatorcontrib><creatorcontrib>Kravitz, Noah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alon, Noga</au><au>Bourla, Gabriela</au><au>Graham, Ben</au><au>He, Xiaoyu</au><au>Kravitz, Noah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logarithmically larger deletion codes of all distances</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3304565</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8506-342X</orcidid><orcidid>https://orcid.org/0000-0003-1332-4883</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2024-01, Vol.70 (1), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_10214606
source IEEE Xplore
subjects Codes
Deletion
Deletion codes
Electronic mail
Indexes
longest common subsequence
Mathematics
probabilistic combinatorics
Synchronization
Upper bound
title Logarithmically larger deletion codes of all distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logarithmically%20larger%20deletion%20codes%20of%20all%20distances&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Alon,%20Noga&rft.date=2024-01-01&rft.volume=70&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3304565&rft_dat=%3Cproquest_RIE%3E2906590010%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906590010&rft_id=info:pmid/&rft_ieee_id=10214606&rfr_iscdi=true