Logarithmically larger deletion codes of all distances
The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Leven...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2024-01, Vol.70 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 70 |
creator | Alon, Noga Bourla, Gabriela Graham, Ben He, Xiaoyu Kravitz, Noah |
description | The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance. |
doi_str_mv | 10.1109/TIT.2023.3304565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10214606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214606</ieee_id><sourcerecordid>2906590010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEqWwMzBEYk45P2OPqOJRKRJLmS3Hj5IqjYudDv33uGoHptPpvnt9CD1iWGAM6mW9Wi8IELqgFBgX_ArNMOdNrQRn12gGgGWtGJO36C7nbUkZx2SGRBs3JvXTz663ZhiO1WDSxqfK-cFPfRwrG53PVQxVqVauz5MZrc_36CaYIfuHS5yj7_e39fKzbr8-VsvXtrZEkan2wkLHnCWkMZKWU4A1hmIneOiktNZZY6lwjDWOBRmU6yRQEVSBQwEpnaPn89x9ir8Hnye9jYc0lpWaKBBclUegUHCmbIo5Jx_0PvU7k44agz7Z0cWOPtnRFzul5enc0nvv_-EEMwGC_gER6WAL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906590010</pqid></control><display><type>article</type><title>Logarithmically larger deletion codes of all distances</title><source>IEEE Xplore</source><creator>Alon, Noga ; Bourla, Gabriela ; Graham, Ben ; He, Xiaoyu ; Kravitz, Noah</creator><creatorcontrib>Alon, Noga ; Bourla, Gabriela ; Graham, Ben ; He, Xiaoyu ; Kravitz, Noah</creatorcontrib><description>The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3304565</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Deletion ; Deletion codes ; Electronic mail ; Indexes ; longest common subsequence ; Mathematics ; probabilistic combinatorics ; Synchronization ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2024-01, Vol.70 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</citedby><cites>FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</cites><orcidid>0000-0001-8506-342X ; 0000-0003-1332-4883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10214606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Bourla, Gabriela</creatorcontrib><creatorcontrib>Graham, Ben</creatorcontrib><creatorcontrib>He, Xiaoyu</creatorcontrib><creatorcontrib>Kravitz, Noah</creatorcontrib><title>Logarithmically larger deletion codes of all distances</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.</description><subject>Codes</subject><subject>Deletion</subject><subject>Deletion codes</subject><subject>Electronic mail</subject><subject>Indexes</subject><subject>longest common subsequence</subject><subject>Mathematics</subject><subject>probabilistic combinatorics</subject><subject>Synchronization</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQgC0EEqWwMzBEYk45P2OPqOJRKRJLmS3Hj5IqjYudDv33uGoHptPpvnt9CD1iWGAM6mW9Wi8IELqgFBgX_ArNMOdNrQRn12gGgGWtGJO36C7nbUkZx2SGRBs3JvXTz663ZhiO1WDSxqfK-cFPfRwrG53PVQxVqVauz5MZrc_36CaYIfuHS5yj7_e39fKzbr8-VsvXtrZEkan2wkLHnCWkMZKWU4A1hmIneOiktNZZY6lwjDWOBRmU6yRQEVSBQwEpnaPn89x9ir8Hnye9jYc0lpWaKBBclUegUHCmbIo5Jx_0PvU7k44agz7Z0cWOPtnRFzul5enc0nvv_-EEMwGC_gER6WAL</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Alon, Noga</creator><creator>Bourla, Gabriela</creator><creator>Graham, Ben</creator><creator>He, Xiaoyu</creator><creator>Kravitz, Noah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8506-342X</orcidid><orcidid>https://orcid.org/0000-0003-1332-4883</orcidid></search><sort><creationdate>20240101</creationdate><title>Logarithmically larger deletion codes of all distances</title><author>Alon, Noga ; Bourla, Gabriela ; Graham, Ben ; He, Xiaoyu ; Kravitz, Noah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e6c0b4dc227a83965047a31d65fb88ccdcac36d447d4f8f9db8036f9a83f7a333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Deletion</topic><topic>Deletion codes</topic><topic>Electronic mail</topic><topic>Indexes</topic><topic>longest common subsequence</topic><topic>Mathematics</topic><topic>probabilistic combinatorics</topic><topic>Synchronization</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Bourla, Gabriela</creatorcontrib><creatorcontrib>Graham, Ben</creatorcontrib><creatorcontrib>He, Xiaoyu</creatorcontrib><creatorcontrib>Kravitz, Noah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alon, Noga</au><au>Bourla, Gabriela</au><au>Graham, Ben</au><au>He, Xiaoyu</au><au>Kravitz, Noah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logarithmically larger deletion codes of all distances</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The deletion distance between two binary words u , v ∈ {0, 1} n is the smallest k such that u and v share a common subsequence of length n - k . A set C of binary words of length n is called a k -deletion code if every pair of distinct words in C has deletion distance greater than k . In 1965, Levenshtein initiated the study of deletion codes by showing that, for k ≥ 1 fixed and n going to infinity, a k -deletion code C ⊆ {0, 1} n of maximum size satisfies Ω k (2 n / n 2 k ) ≤ | C | ≤ O k (2 n / n k ). We make the first asymptotic improvement to these bounds by showing that there exist k -deletion codes with size at least Ω k (2 n log n / n 2 k ). Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert-Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3304565</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8506-342X</orcidid><orcidid>https://orcid.org/0000-0003-1332-4883</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2024-01, Vol.70 (1), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_10214606 |
source | IEEE Xplore |
subjects | Codes Deletion Deletion codes Electronic mail Indexes longest common subsequence Mathematics probabilistic combinatorics Synchronization Upper bound |
title | Logarithmically larger deletion codes of all distances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logarithmically%20larger%20deletion%20codes%20of%20all%20distances&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Alon,%20Noga&rft.date=2024-01-01&rft.volume=70&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3304565&rft_dat=%3Cproquest_RIE%3E2906590010%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906590010&rft_id=info:pmid/&rft_ieee_id=10214606&rfr_iscdi=true |