Electrohydrodynamic Printed Ultra-micro AgNPs Thin Film Temperature Sensor

To achieve high-density and arrayed temperature sensing, thin film temperature sensors require a multilayer structure and miniaturized preparation technology. Currently, screen printing, direct writing by squeeze, and MEMS are the main methods for preparing thin film sensors. However, the film line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-08, p.1-1
Hauptverfasser: He, Yingping, Chen, Hongyu, Li, Lanlan, Liu, Jin, Guo, Maocheng, Su, Zhixuan, Duan, Bowen, Zhao, Yang, Sun, Daoheng, Hai, Zhenyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE sensors journal
container_volume
creator He, Yingping
Chen, Hongyu
Li, Lanlan
Liu, Jin
Guo, Maocheng
Su, Zhixuan
Duan, Bowen
Zhao, Yang
Sun, Daoheng
Hai, Zhenyin
description To achieve high-density and arrayed temperature sensing, thin film temperature sensors require a multilayer structure and miniaturized preparation technology. Currently, screen printing, direct writing by squeeze, and MEMS are the main methods for preparing thin film sensors. However, the film line width produced by screen printing or direct writing by squeeze is impossible to achieve width within 10 μm, while MEMS is costly and limited in terms of target materials. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 μ m width. In this study, we propose a method using only EHD printing to prepare ultra-micro thin film temperature sensors, including a AgNPs sensitive layer and PDMS encapsulation layer. The area of the AgNPs film sensitive layer is less than 120 μm×120 μm, with an average line width of less than 10 μm, and a film thickness of less than 200 nm. The printing range of the PDMS encapsulation layer is 300 μm×300 μm, with a minimum film thickness of 567 nm. The performance test results show that the ultra-micro AgNPs film temperature sensor after EHD printing of PDMS encapsulation has a higher temperature measurement upper limit. The hysteresis error was ± 0.1309%, and the repeatability error was ± 0.3311%, both much lower than previously reported. The successful fabrication of ultra-micro thin film temperature sensors using EHD printing suggests the potential of this method to supersede MEMS for achieving high-density and arrayed temperature sensing in limited space.
doi_str_mv 10.1109/JSEN.2023.3302355
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10214524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214524</ieee_id><sourcerecordid>10214524</sourcerecordid><originalsourceid>FETCH-ieee_primary_102145243</originalsourceid><addsrcrecordid>eNqFicsKgkAUQGdRkD0-IGgxP6DNw0FcRijhQgQN2smgt5zwxR1b-Pe5aN_mHDiHkCNnHucsPCd5lHqCCelJuVCpFXG4ksz1ZfDYkK21b8Z4GKjAIUnUQjXh0Mw1DvXc685UNEPTT1DTezuhdpeCA7280szSojE9jU3b0QK6EVBPHwSaQ28H3JP1U7cWDj_vyCmOiuvNNQBQjmg6jXPJmeC-Er78s781rTwl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrohydrodynamic Printed Ultra-micro AgNPs Thin Film Temperature Sensor</title><source>IEEE Electronic Library (IEL)</source><creator>He, Yingping ; Chen, Hongyu ; Li, Lanlan ; Liu, Jin ; Guo, Maocheng ; Su, Zhixuan ; Duan, Bowen ; Zhao, Yang ; Sun, Daoheng ; Hai, Zhenyin</creator><creatorcontrib>He, Yingping ; Chen, Hongyu ; Li, Lanlan ; Liu, Jin ; Guo, Maocheng ; Su, Zhixuan ; Duan, Bowen ; Zhao, Yang ; Sun, Daoheng ; Hai, Zhenyin</creatorcontrib><description>To achieve high-density and arrayed temperature sensing, thin film temperature sensors require a multilayer structure and miniaturized preparation technology. Currently, screen printing, direct writing by squeeze, and MEMS are the main methods for preparing thin film sensors. However, the film line width produced by screen printing or direct writing by squeeze is impossible to achieve width within 10 μm, while MEMS is costly and limited in terms of target materials. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 μ m width. In this study, we propose a method using only EHD printing to prepare ultra-micro thin film temperature sensors, including a AgNPs sensitive layer and PDMS encapsulation layer. The area of the AgNPs film sensitive layer is less than 120 μm×120 μm, with an average line width of less than 10 μm, and a film thickness of less than 200 nm. The printing range of the PDMS encapsulation layer is 300 μm×300 μm, with a minimum film thickness of 567 nm. The performance test results show that the ultra-micro AgNPs film temperature sensor after EHD printing of PDMS encapsulation has a higher temperature measurement upper limit. The hysteresis error was ± 0.1309%, and the repeatability error was ± 0.3311%, both much lower than previously reported. The successful fabrication of ultra-micro thin film temperature sensors using EHD printing suggests the potential of this method to supersede MEMS for achieving high-density and arrayed temperature sensing in limited space.</description><identifier>ISSN: 1530-437X</identifier><identifier>DOI: 10.1109/JSEN.2023.3302355</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>AgNPs ; Electrohydrodynamic printing ; Hysteresis ; Printing ; Sensors ; Substrates ; Surface treatment ; Temperature measurement ; Temperature Sensor ; Temperature sensors ; thin film ; Ultra-micro</subject><ispartof>IEEE sensors journal, 2023-08, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7821-4274 ; 0000-0001-7729-1481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10214524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Yingping</creatorcontrib><creatorcontrib>Chen, Hongyu</creatorcontrib><creatorcontrib>Li, Lanlan</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Guo, Maocheng</creatorcontrib><creatorcontrib>Su, Zhixuan</creatorcontrib><creatorcontrib>Duan, Bowen</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Sun, Daoheng</creatorcontrib><creatorcontrib>Hai, Zhenyin</creatorcontrib><title>Electrohydrodynamic Printed Ultra-micro AgNPs Thin Film Temperature Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>To achieve high-density and arrayed temperature sensing, thin film temperature sensors require a multilayer structure and miniaturized preparation technology. Currently, screen printing, direct writing by squeeze, and MEMS are the main methods for preparing thin film sensors. However, the film line width produced by screen printing or direct writing by squeeze is impossible to achieve width within 10 μm, while MEMS is costly and limited in terms of target materials. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 μ m width. In this study, we propose a method using only EHD printing to prepare ultra-micro thin film temperature sensors, including a AgNPs sensitive layer and PDMS encapsulation layer. The area of the AgNPs film sensitive layer is less than 120 μm×120 μm, with an average line width of less than 10 μm, and a film thickness of less than 200 nm. The printing range of the PDMS encapsulation layer is 300 μm×300 μm, with a minimum film thickness of 567 nm. The performance test results show that the ultra-micro AgNPs film temperature sensor after EHD printing of PDMS encapsulation has a higher temperature measurement upper limit. The hysteresis error was ± 0.1309%, and the repeatability error was ± 0.3311%, both much lower than previously reported. The successful fabrication of ultra-micro thin film temperature sensors using EHD printing suggests the potential of this method to supersede MEMS for achieving high-density and arrayed temperature sensing in limited space.</description><subject>AgNPs</subject><subject>Electrohydrodynamic printing</subject><subject>Hysteresis</subject><subject>Printing</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Surface treatment</subject><subject>Temperature measurement</subject><subject>Temperature Sensor</subject><subject>Temperature sensors</subject><subject>thin film</subject><subject>Ultra-micro</subject><issn>1530-437X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFicsKgkAUQGdRkD0-IGgxP6DNw0FcRijhQgQN2smgt5zwxR1b-Pe5aN_mHDiHkCNnHucsPCd5lHqCCelJuVCpFXG4ksz1ZfDYkK21b8Z4GKjAIUnUQjXh0Mw1DvXc685UNEPTT1DTezuhdpeCA7280szSojE9jU3b0QK6EVBPHwSaQ28H3JP1U7cWDj_vyCmOiuvNNQBQjmg6jXPJmeC-Er78s781rTwl</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>He, Yingping</creator><creator>Chen, Hongyu</creator><creator>Li, Lanlan</creator><creator>Liu, Jin</creator><creator>Guo, Maocheng</creator><creator>Su, Zhixuan</creator><creator>Duan, Bowen</creator><creator>Zhao, Yang</creator><creator>Sun, Daoheng</creator><creator>Hai, Zhenyin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-7821-4274</orcidid><orcidid>https://orcid.org/0000-0001-7729-1481</orcidid></search><sort><creationdate>20230810</creationdate><title>Electrohydrodynamic Printed Ultra-micro AgNPs Thin Film Temperature Sensor</title><author>He, Yingping ; Chen, Hongyu ; Li, Lanlan ; Liu, Jin ; Guo, Maocheng ; Su, Zhixuan ; Duan, Bowen ; Zhao, Yang ; Sun, Daoheng ; Hai, Zhenyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_102145243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>AgNPs</topic><topic>Electrohydrodynamic printing</topic><topic>Hysteresis</topic><topic>Printing</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Surface treatment</topic><topic>Temperature measurement</topic><topic>Temperature Sensor</topic><topic>Temperature sensors</topic><topic>thin film</topic><topic>Ultra-micro</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yingping</creatorcontrib><creatorcontrib>Chen, Hongyu</creatorcontrib><creatorcontrib>Li, Lanlan</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Guo, Maocheng</creatorcontrib><creatorcontrib>Su, Zhixuan</creatorcontrib><creatorcontrib>Duan, Bowen</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Sun, Daoheng</creatorcontrib><creatorcontrib>Hai, Zhenyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Yingping</au><au>Chen, Hongyu</au><au>Li, Lanlan</au><au>Liu, Jin</au><au>Guo, Maocheng</au><au>Su, Zhixuan</au><au>Duan, Bowen</au><au>Zhao, Yang</au><au>Sun, Daoheng</au><au>Hai, Zhenyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrohydrodynamic Printed Ultra-micro AgNPs Thin Film Temperature Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-08-10</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><coden>ISJEAZ</coden><abstract>To achieve high-density and arrayed temperature sensing, thin film temperature sensors require a multilayer structure and miniaturized preparation technology. Currently, screen printing, direct writing by squeeze, and MEMS are the main methods for preparing thin film sensors. However, the film line width produced by screen printing or direct writing by squeeze is impossible to achieve width within 10 μm, while MEMS is costly and limited in terms of target materials. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 μ m width. In this study, we propose a method using only EHD printing to prepare ultra-micro thin film temperature sensors, including a AgNPs sensitive layer and PDMS encapsulation layer. The area of the AgNPs film sensitive layer is less than 120 μm×120 μm, with an average line width of less than 10 μm, and a film thickness of less than 200 nm. The printing range of the PDMS encapsulation layer is 300 μm×300 μm, with a minimum film thickness of 567 nm. The performance test results show that the ultra-micro AgNPs film temperature sensor after EHD printing of PDMS encapsulation has a higher temperature measurement upper limit. The hysteresis error was ± 0.1309%, and the repeatability error was ± 0.3311%, both much lower than previously reported. The successful fabrication of ultra-micro thin film temperature sensors using EHD printing suggests the potential of this method to supersede MEMS for achieving high-density and arrayed temperature sensing in limited space.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2023.3302355</doi><orcidid>https://orcid.org/0000-0002-7821-4274</orcidid><orcidid>https://orcid.org/0000-0001-7729-1481</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-08, p.1-1
issn 1530-437X
language eng
recordid cdi_ieee_primary_10214524
source IEEE Electronic Library (IEL)
subjects AgNPs
Electrohydrodynamic printing
Hysteresis
Printing
Sensors
Substrates
Surface treatment
Temperature measurement
Temperature Sensor
Temperature sensors
thin film
Ultra-micro
title Electrohydrodynamic Printed Ultra-micro AgNPs Thin Film Temperature Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrohydrodynamic%20Printed%20Ultra-micro%20AgNPs%20Thin%20Film%20Temperature%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=He,%20Yingping&rft.date=2023-08-10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3302355&rft_dat=%3Cieee_RIE%3E10214524%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10214524&rfr_iscdi=true