Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties

This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2023-12, Vol.39 (6), p.1-18
Hauptverfasser: Xu, Shaohang, Zhu, Lijun, Zhang, Hai-Tao, Ho, Chin Pang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 6
container_start_page 1
container_title IEEE transactions on robotics
container_volume 39
creator Xu, Shaohang
Zhu, Lijun
Zhang, Hai-Tao
Ho, Chin Pang
description This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by \sim11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments.
doi_str_mv 10.1109/TRO.2023.3299527
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10214438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10214438</ieee_id><sourcerecordid>2899471071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4WPG-dfOwmOUrxCyrV2p5DdjMLW9pNTbJF_71b2oOXmWF43hl4CLmlMKEU9MNyMZ8wYHzCmdYFk2dkRLWgOYhSnQ9zUbCcg1aX5CrGNQATGviIfC181ceUTX23x5_s3TvcZB8BXVundo-HfQp-kzU-ZJ-9daHfoctmvvZbn1rfZavOYRhqjSHZtkstxmty0dhNxJtTH5PV89Ny-prP5i9v08dZXjPNUq5oyVVVoARbQE0ryStV6srKgoEELgAFF1ZRV6pGcVcyhrZkCpnktZNlxcfk_nh3F_x3jzGZte9DN7w0TGktJAVJBwqOVB18jAEbswvt1oZfQ8Ec1JlBnTmoMyd1Q-TuGGkR8R_OqBBc8T8ZQmnG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899471071</pqid></control><display><type>article</type><title>Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Shaohang ; Zhu, Lijun ; Zhang, Hai-Tao ; Ho, Chin Pang</creator><creatorcontrib>Xu, Shaohang ; Zhu, Lijun ; Zhang, Hai-Tao ; Ho, Chin Pang</creatorcontrib><description>This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\sim&lt;/tex-math&gt;&lt;/inline-formula&gt;11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3299527</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Algorithms ; Constraint modelling ; Controllers ; Heuristic algorithms ; Legged robots ; Locomotion ; model predictive control (MPC) ; Optimization ; optimization and optimal control ; Optimization models ; Predictive control ; Predictive models ; Quadratic programming ; Quadrupedal robots ; Robots ; Robust control ; robust/adaptive control of robotic systems ; Uncertainty ; Unknown environments</subject><ispartof>IEEE transactions on robotics, 2023-12, Vol.39 (6), p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3</citedby><cites>FETCH-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3</cites><orcidid>0000-0002-8819-8829 ; 0000-0002-6157-242X ; 0000-0002-2655-1818 ; 0000-0002-2143-978X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10214438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10214438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Shaohang</creatorcontrib><creatorcontrib>Zhu, Lijun</creatorcontrib><creatorcontrib>Zhang, Hai-Tao</creatorcontrib><creatorcontrib>Ho, Chin Pang</creatorcontrib><title>Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\sim&lt;/tex-math&gt;&lt;/inline-formula&gt;11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments.</description><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Constraint modelling</subject><subject>Controllers</subject><subject>Heuristic algorithms</subject><subject>Legged robots</subject><subject>Locomotion</subject><subject>model predictive control (MPC)</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>Optimization models</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Quadratic programming</subject><subject>Quadrupedal robots</subject><subject>Robots</subject><subject>Robust control</subject><subject>robust/adaptive control of robotic systems</subject><subject>Uncertainty</subject><subject>Unknown environments</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4WPG-dfOwmOUrxCyrV2p5DdjMLW9pNTbJF_71b2oOXmWF43hl4CLmlMKEU9MNyMZ8wYHzCmdYFk2dkRLWgOYhSnQ9zUbCcg1aX5CrGNQATGviIfC181ceUTX23x5_s3TvcZB8BXVundo-HfQp-kzU-ZJ-9daHfoctmvvZbn1rfZavOYRhqjSHZtkstxmty0dhNxJtTH5PV89Ny-prP5i9v08dZXjPNUq5oyVVVoARbQE0ryStV6srKgoEELgAFF1ZRV6pGcVcyhrZkCpnktZNlxcfk_nh3F_x3jzGZte9DN7w0TGktJAVJBwqOVB18jAEbswvt1oZfQ8Ec1JlBnTmoMyd1Q-TuGGkR8R_OqBBc8T8ZQmnG</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Xu, Shaohang</creator><creator>Zhu, Lijun</creator><creator>Zhang, Hai-Tao</creator><creator>Ho, Chin Pang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8819-8829</orcidid><orcidid>https://orcid.org/0000-0002-6157-242X</orcidid><orcidid>https://orcid.org/0000-0002-2655-1818</orcidid><orcidid>https://orcid.org/0000-0002-2143-978X</orcidid></search><sort><creationdate>20231201</creationdate><title>Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties</title><author>Xu, Shaohang ; Zhu, Lijun ; Zhang, Hai-Tao ; Ho, Chin Pang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-81638b5e70a50c1b73b869ba752070340e434a81d68f83d622ea628e273cd76b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Constraint modelling</topic><topic>Controllers</topic><topic>Heuristic algorithms</topic><topic>Legged robots</topic><topic>Locomotion</topic><topic>model predictive control (MPC)</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>Optimization models</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Quadratic programming</topic><topic>Quadrupedal robots</topic><topic>Robots</topic><topic>Robust control</topic><topic>robust/adaptive control of robotic systems</topic><topic>Uncertainty</topic><topic>Unknown environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shaohang</creatorcontrib><creatorcontrib>Zhu, Lijun</creatorcontrib><creatorcontrib>Zhang, Hai-Tao</creatorcontrib><creatorcontrib>Ho, Chin Pang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Shaohang</au><au>Zhu, Lijun</au><au>Zhang, Hai-Tao</au><au>Ho, Chin Pang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This article considers quadruped locomotion control in the presence of uncertainties. Two types of structured uncertainties are considered, namely, uncertain friction constraints and uncertain model dynamics. Then, a min-max optimization model is formulated based on robust optimization, and a robust min-max model predictive controller is proposed by recurrently solving the optimization model. We prove that the min-max optimization model is equivalent to a convex quadratic constrained quadratic program by exploiting the structure of uncertainties. Moreover, a two-stage optimization algorithm is proposed to solve the optimization problem efficiently, allowing for the deployment of the controller onto the real robot. The results show that the proposed optimization algorithm can improve solving frequency by &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\sim&lt;/tex-math&gt;&lt;/inline-formula&gt;11× compared with Gurobi. The proposed controller is able to stabilize quadruped locomotion in challenging scenarios where the uncertainties are caused by significant disturbances and unknown environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3299527</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8819-8829</orcidid><orcidid>https://orcid.org/0000-0002-6157-242X</orcidid><orcidid>https://orcid.org/0000-0002-2655-1818</orcidid><orcidid>https://orcid.org/0000-0002-2143-978X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2023-12, Vol.39 (6), p.1-18
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_10214438
source IEEE Electronic Library (IEL)
subjects Adaptation models
Algorithms
Constraint modelling
Controllers
Heuristic algorithms
Legged robots
Locomotion
model predictive control (MPC)
Optimization
optimization and optimal control
Optimization models
Predictive control
Predictive models
Quadratic programming
Quadrupedal robots
Robots
Robust control
robust/adaptive control of robotic systems
Uncertainty
Unknown environments
title Robust Convex Model Predictive Control for Quadruped Locomotion Under Uncertainties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T09%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Convex%20Model%20Predictive%20Control%20for%20Quadruped%20Locomotion%20Under%20Uncertainties&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Xu,%20Shaohang&rft.date=2023-12-01&rft.volume=39&rft.issue=6&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3299527&rft_dat=%3Cproquest_RIE%3E2899471071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899471071&rft_id=info:pmid/&rft_ieee_id=10214438&rfr_iscdi=true