Robust Imaging of Speed-of-Sound Using Virtual Source Transmission

Speed-of-sound (SoS) is a novel imaging biomarker for assessing biomechanical characteristics of soft tissues. SoS imaging in pulse-echo mode using conventional ultrasound systems with hand-held transducers has the potential to enable new clinical uses. Recent work demonstrated diverging waves from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2023-10, Vol.PP (10), p.1-1
Hauptverfasser: Schweizer, Dieter, Rau, Richard, Bezek, Can Deniz, Kubik-Huch, Rahel A., Goksel, Orcun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 10
container_start_page 1
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume PP
creator Schweizer, Dieter
Rau, Richard
Bezek, Can Deniz
Kubik-Huch, Rahel A.
Goksel, Orcun
description Speed-of-sound (SoS) is a novel imaging biomarker for assessing biomechanical characteristics of soft tissues. SoS imaging in pulse-echo mode using conventional ultrasound systems with hand-held transducers has the potential to enable new clinical uses. Recent work demonstrated diverging waves from single-element (SE) transmits to outperform plane-wave sequences. However, single-element transmits have severely limited power and hence produce low signal-to-noise ratio (SNR) in echo data. We herein propose Walsh-Hadamard (WH) coded and virtual-source (VS) transmit sequences for improved SNR in SoS imaging. We additionally present an iterative method of estimating beamforming SoS in the medium, which otherwise confound SoS reconstructions due to beamforming inaccuracies in the images used for reconstruction. Through numerical simulations, phantom experiments, and in-vivo imaging data, we show that WH is not robust against motion, which is often unavoidable in clinical imaging scenarios. Our proposed virtual-source sequence is shown to provide the highest SoS reconstruction performance, especially robust to motion-artifacts. In phantom experiments, despite having a comparable SoS root-mean-square-error (RMSE) of 17.5 to 18.0 m/s at rest, with a minor axial probe motion of ≈0.67 mm/s the RMSE for SE, WH, and VS already deteriorate to 20.2, 105.4, 19.0 m/s, respectively; showing that WH produces unacceptable results, not robust to motion. In the clinical data, the high SNR and motion-resilience of VS sequence is seen to yield superior contrast compared to SE and WH sequences.
doi_str_mv 10.1109/TUFFC.2023.3303172
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10210597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210597</ieee_id><sourcerecordid>2847748177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4142-fdae85d501075a8df5d42d31b17f0dec76f9814bf8f14ba76665d8940eb20823</originalsourceid><addsrcrecordid>eNpdkU1LAzEURYMoWj_-gIgMuHHh1HxOkmWtVgVB0NptyEySMtJOatIg_ntTW4u4SeBx3uU-DgCnCPYRgvJ6_DYaDfsYYtInBBLE8Q7oIYZZKSRju6AHhWAlgQgegMMY3yFElEq8Dw4IZ1RCwXvg5sXXKS6Lx7mett208K54XVhrSu_KV586U7zF1XzShmXSsyLPQmOLcdBdnLcxtr47BntOz6I92fxHYDy6Gw8fyqfn-8fh4KlsKKK4dEZbwQzLdTjTwjhmKDYE1Yg7aGzDKycForUTLr-aV1XFjJAU2hpDgckRuFrHxk-7SLVahHauw5fyulW37WSgfJiqlBSDsqIk45drfBH8R7JxqXLdxs5murM-RYUF5ZwKxHlGL_6h7_nKLt-SKS6ooFKuAvGaaoKPMVi3bYCgWvlQPz7Uyofa-MhL55voVM-t2a78CsjA2RporbV_EjGCTHLyDY7-jWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878484993</pqid></control><display><type>article</type><title>Robust Imaging of Speed-of-Sound Using Virtual Source Transmission</title><source>IEEE Xplore</source><creator>Schweizer, Dieter ; Rau, Richard ; Bezek, Can Deniz ; Kubik-Huch, Rahel A. ; Goksel, Orcun</creator><creatorcontrib>Schweizer, Dieter ; Rau, Richard ; Bezek, Can Deniz ; Kubik-Huch, Rahel A. ; Goksel, Orcun</creatorcontrib><description>Speed-of-sound (SoS) is a novel imaging biomarker for assessing biomechanical characteristics of soft tissues. SoS imaging in pulse-echo mode using conventional ultrasound systems with hand-held transducers has the potential to enable new clinical uses. Recent work demonstrated diverging waves from single-element (SE) transmits to outperform plane-wave sequences. However, single-element transmits have severely limited power and hence produce low signal-to-noise ratio (SNR) in echo data. We herein propose Walsh-Hadamard (WH) coded and virtual-source (VS) transmit sequences for improved SNR in SoS imaging. We additionally present an iterative method of estimating beamforming SoS in the medium, which otherwise confound SoS reconstructions due to beamforming inaccuracies in the images used for reconstruction. Through numerical simulations, phantom experiments, and in-vivo imaging data, we show that WH is not robust against motion, which is often unavoidable in clinical imaging scenarios. Our proposed virtual-source sequence is shown to provide the highest SoS reconstruction performance, especially robust to motion-artifacts. In phantom experiments, despite having a comparable SoS root-mean-square-error (RMSE) of 17.5 to 18.0 m/s at rest, with a minor axial probe motion of ≈0.67 mm/s the RMSE for SE, WH, and VS already deteriorate to 20.2, 105.4, 19.0 m/s, respectively; showing that WH produces unacceptable results, not robust to motion. In the clinical data, the high SNR and motion-resilience of VS sequence is seen to yield superior contrast compared to SE and WH sequences.</description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2023.3303172</identifier><identifier>PMID: 37549087</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Apertures ; Beamforming ; Biomarkers ; Biomechanics ; diverging waves ; Image reconstruction ; Imaging ; Iterative methods ; motion artifacts ; Plane waves ; Radio frequency ; Robustness (mathematics) ; Root-mean-square errors ; Sequences ; Signal to noise ratio ; Soft tissues ; Transducers ; Ultrasonic imaging ; ultrasound computed tomography</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2023-10, Vol.PP (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4142-fdae85d501075a8df5d42d31b17f0dec76f9814bf8f14ba76665d8940eb20823</citedby><cites>FETCH-LOGICAL-c4142-fdae85d501075a8df5d42d31b17f0dec76f9814bf8f14ba76665d8940eb20823</cites><orcidid>0000-0003-1539-6493 ; 0000-0002-8639-7373 ; 0000-0003-1737-0756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210597$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10210597$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37549087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-509643$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Schweizer, Dieter</creatorcontrib><creatorcontrib>Rau, Richard</creatorcontrib><creatorcontrib>Bezek, Can Deniz</creatorcontrib><creatorcontrib>Kubik-Huch, Rahel A.</creatorcontrib><creatorcontrib>Goksel, Orcun</creatorcontrib><title>Robust Imaging of Speed-of-Sound Using Virtual Source Transmission</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Speed-of-sound (SoS) is a novel imaging biomarker for assessing biomechanical characteristics of soft tissues. SoS imaging in pulse-echo mode using conventional ultrasound systems with hand-held transducers has the potential to enable new clinical uses. Recent work demonstrated diverging waves from single-element (SE) transmits to outperform plane-wave sequences. However, single-element transmits have severely limited power and hence produce low signal-to-noise ratio (SNR) in echo data. We herein propose Walsh-Hadamard (WH) coded and virtual-source (VS) transmit sequences for improved SNR in SoS imaging. We additionally present an iterative method of estimating beamforming SoS in the medium, which otherwise confound SoS reconstructions due to beamforming inaccuracies in the images used for reconstruction. Through numerical simulations, phantom experiments, and in-vivo imaging data, we show that WH is not robust against motion, which is often unavoidable in clinical imaging scenarios. Our proposed virtual-source sequence is shown to provide the highest SoS reconstruction performance, especially robust to motion-artifacts. In phantom experiments, despite having a comparable SoS root-mean-square-error (RMSE) of 17.5 to 18.0 m/s at rest, with a minor axial probe motion of ≈0.67 mm/s the RMSE for SE, WH, and VS already deteriorate to 20.2, 105.4, 19.0 m/s, respectively; showing that WH produces unacceptable results, not robust to motion. In the clinical data, the high SNR and motion-resilience of VS sequence is seen to yield superior contrast compared to SE and WH sequences.</description><subject>Apertures</subject><subject>Beamforming</subject><subject>Biomarkers</subject><subject>Biomechanics</subject><subject>diverging waves</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Iterative methods</subject><subject>motion artifacts</subject><subject>Plane waves</subject><subject>Radio frequency</subject><subject>Robustness (mathematics)</subject><subject>Root-mean-square errors</subject><subject>Sequences</subject><subject>Signal to noise ratio</subject><subject>Soft tissues</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>ultrasound computed tomography</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEURYMoWj_-gIgMuHHh1HxOkmWtVgVB0NptyEySMtJOatIg_ntTW4u4SeBx3uU-DgCnCPYRgvJ6_DYaDfsYYtInBBLE8Q7oIYZZKSRju6AHhWAlgQgegMMY3yFElEq8Dw4IZ1RCwXvg5sXXKS6Lx7mett208K54XVhrSu_KV586U7zF1XzShmXSsyLPQmOLcdBdnLcxtr47BntOz6I92fxHYDy6Gw8fyqfn-8fh4KlsKKK4dEZbwQzLdTjTwjhmKDYE1Yg7aGzDKycForUTLr-aV1XFjJAU2hpDgckRuFrHxk-7SLVahHauw5fyulW37WSgfJiqlBSDsqIk45drfBH8R7JxqXLdxs5murM-RYUF5ZwKxHlGL_6h7_nKLt-SKS6ooFKuAvGaaoKPMVi3bYCgWvlQPz7Uyofa-MhL55voVM-t2a78CsjA2RporbV_EjGCTHLyDY7-jWg</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Schweizer, Dieter</creator><creator>Rau, Richard</creator><creator>Bezek, Can Deniz</creator><creator>Kubik-Huch, Rahel A.</creator><creator>Goksel, Orcun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0003-1539-6493</orcidid><orcidid>https://orcid.org/0000-0002-8639-7373</orcidid><orcidid>https://orcid.org/0000-0003-1737-0756</orcidid></search><sort><creationdate>20231001</creationdate><title>Robust Imaging of Speed-of-Sound Using Virtual Source Transmission</title><author>Schweizer, Dieter ; Rau, Richard ; Bezek, Can Deniz ; Kubik-Huch, Rahel A. ; Goksel, Orcun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4142-fdae85d501075a8df5d42d31b17f0dec76f9814bf8f14ba76665d8940eb20823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apertures</topic><topic>Beamforming</topic><topic>Biomarkers</topic><topic>Biomechanics</topic><topic>diverging waves</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Iterative methods</topic><topic>motion artifacts</topic><topic>Plane waves</topic><topic>Radio frequency</topic><topic>Robustness (mathematics)</topic><topic>Root-mean-square errors</topic><topic>Sequences</topic><topic>Signal to noise ratio</topic><topic>Soft tissues</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>ultrasound computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schweizer, Dieter</creatorcontrib><creatorcontrib>Rau, Richard</creatorcontrib><creatorcontrib>Bezek, Can Deniz</creatorcontrib><creatorcontrib>Kubik-Huch, Rahel A.</creatorcontrib><creatorcontrib>Goksel, Orcun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schweizer, Dieter</au><au>Rau, Richard</au><au>Bezek, Can Deniz</au><au>Kubik-Huch, Rahel A.</au><au>Goksel, Orcun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Imaging of Speed-of-Sound Using Virtual Source Transmission</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>PP</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Speed-of-sound (SoS) is a novel imaging biomarker for assessing biomechanical characteristics of soft tissues. SoS imaging in pulse-echo mode using conventional ultrasound systems with hand-held transducers has the potential to enable new clinical uses. Recent work demonstrated diverging waves from single-element (SE) transmits to outperform plane-wave sequences. However, single-element transmits have severely limited power and hence produce low signal-to-noise ratio (SNR) in echo data. We herein propose Walsh-Hadamard (WH) coded and virtual-source (VS) transmit sequences for improved SNR in SoS imaging. We additionally present an iterative method of estimating beamforming SoS in the medium, which otherwise confound SoS reconstructions due to beamforming inaccuracies in the images used for reconstruction. Through numerical simulations, phantom experiments, and in-vivo imaging data, we show that WH is not robust against motion, which is often unavoidable in clinical imaging scenarios. Our proposed virtual-source sequence is shown to provide the highest SoS reconstruction performance, especially robust to motion-artifacts. In phantom experiments, despite having a comparable SoS root-mean-square-error (RMSE) of 17.5 to 18.0 m/s at rest, with a minor axial probe motion of ≈0.67 mm/s the RMSE for SE, WH, and VS already deteriorate to 20.2, 105.4, 19.0 m/s, respectively; showing that WH produces unacceptable results, not robust to motion. In the clinical data, the high SNR and motion-resilience of VS sequence is seen to yield superior contrast compared to SE and WH sequences.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37549087</pmid><doi>10.1109/TUFFC.2023.3303172</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1539-6493</orcidid><orcidid>https://orcid.org/0000-0002-8639-7373</orcidid><orcidid>https://orcid.org/0000-0003-1737-0756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2023-10, Vol.PP (10), p.1-1
issn 0885-3010
1525-8955
1525-8955
language eng
recordid cdi_ieee_primary_10210597
source IEEE Xplore
subjects Apertures
Beamforming
Biomarkers
Biomechanics
diverging waves
Image reconstruction
Imaging
Iterative methods
motion artifacts
Plane waves
Radio frequency
Robustness (mathematics)
Root-mean-square errors
Sequences
Signal to noise ratio
Soft tissues
Transducers
Ultrasonic imaging
ultrasound computed tomography
title Robust Imaging of Speed-of-Sound Using Virtual Source Transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Imaging%20of%20Speed-of-Sound%20Using%20Virtual%20Source%20Transmission&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Schweizer,%20Dieter&rft.date=2023-10-01&rft.volume=PP&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2023.3303172&rft_dat=%3Cproquest_RIE%3E2847748177%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878484993&rft_id=info:pmid/37549087&rft_ieee_id=10210597&rfr_iscdi=true