Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data
Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-09, Vol.23 (18), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 18 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Chen, Wen-Chiao Jan, Shau-Shiun |
description | Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference. |
doi_str_mv | 10.1109/JSEN.2023.3301120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10210575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210575</ieee_id><sourcerecordid>2865090680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhhujiYg-gImHTTwXZ7dd2j0ioGKIJoKJt2bYTmGBdnG7HLj56LbCwdNMJt__T_IFwS2HHuegHl5n47eeABH1ogg4F3AWdLiUaciTOD1v9wjCOEq-LoOrul4DcJXIpBP8zDw6NneoN6ZassF2aZ3xq5I9Yk05sxWbWo1bNjpUWBrdnPVm6ey-ytkH5XvtTYMU1rHx1pSmQt-2zLzDA5ua5cqzSeXJFeSo0sQKZ0v293G2s56N0ON1cFHgtqab0-wGn0_j-fAlnL4_T4aDaaiFin2oiBMmOUjKtVhAkS9SriQqHWtEFMgh0aqvG2IBpIqFUFL3kWJMUaVUQNQN7o-9O2e_91T7bG33rmpeZiLtS1DQT1uKHyntbF07KrKdMyW6Q8Yha0VnreisFZ2dRDeZu2PGENE_XnCQiYx-AfzhfBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090680</pqid></control><display><type>article</type><title>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Wen-Chiao ; Jan, Shau-Shiun</creator><creatorcontrib>Chen, Wen-Chiao ; Jan, Shau-Shiun</creatorcontrib><description>Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3301120</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attitude estimation ; Attitudes ; Background noise ; Centroids ; Covariance matrices ; dynamic background ; Extended Kalman filter ; Heuristic algorithms ; Image processing ; Interference ; Kalman filters ; Low pass filters ; Parameter identification ; Reference stars ; Sensors ; Simulation ; star sensor ; star tracking ; Stars ; Stellar rotation ; Stray light ; Tracking ; Windows (computer programs)</subject><ispartof>IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</citedby><cites>FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</cites><orcidid>0000-0002-0863-947X ; 0000-0003-4122-8370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10210575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Wen-Chiao</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><title>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference.</description><subject>Algorithms</subject><subject>Attitude estimation</subject><subject>Attitudes</subject><subject>Background noise</subject><subject>Centroids</subject><subject>Covariance matrices</subject><subject>dynamic background</subject><subject>Extended Kalman filter</subject><subject>Heuristic algorithms</subject><subject>Image processing</subject><subject>Interference</subject><subject>Kalman filters</subject><subject>Low pass filters</subject><subject>Parameter identification</subject><subject>Reference stars</subject><subject>Sensors</subject><subject>Simulation</subject><subject>star sensor</subject><subject>star tracking</subject><subject>Stars</subject><subject>Stellar rotation</subject><subject>Stray light</subject><subject>Tracking</subject><subject>Windows (computer programs)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhhujiYg-gImHTTwXZ7dd2j0ioGKIJoKJt2bYTmGBdnG7HLj56LbCwdNMJt__T_IFwS2HHuegHl5n47eeABH1ogg4F3AWdLiUaciTOD1v9wjCOEq-LoOrul4DcJXIpBP8zDw6NneoN6ZassF2aZ3xq5I9Yk05sxWbWo1bNjpUWBrdnPVm6ey-ytkH5XvtTYMU1rHx1pSmQt-2zLzDA5ua5cqzSeXJFeSo0sQKZ0v293G2s56N0ON1cFHgtqab0-wGn0_j-fAlnL4_T4aDaaiFin2oiBMmOUjKtVhAkS9SriQqHWtEFMgh0aqvG2IBpIqFUFL3kWJMUaVUQNQN7o-9O2e_91T7bG33rmpeZiLtS1DQT1uKHyntbF07KrKdMyW6Q8Yha0VnreisFZ2dRDeZu2PGENE_XnCQiYx-AfzhfBw</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Chen, Wen-Chiao</creator><creator>Jan, Shau-Shiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0003-4122-8370</orcidid></search><sort><creationdate>20230915</creationdate><title>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</title><author>Chen, Wen-Chiao ; Jan, Shau-Shiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attitude estimation</topic><topic>Attitudes</topic><topic>Background noise</topic><topic>Centroids</topic><topic>Covariance matrices</topic><topic>dynamic background</topic><topic>Extended Kalman filter</topic><topic>Heuristic algorithms</topic><topic>Image processing</topic><topic>Interference</topic><topic>Kalman filters</topic><topic>Low pass filters</topic><topic>Parameter identification</topic><topic>Reference stars</topic><topic>Sensors</topic><topic>Simulation</topic><topic>star sensor</topic><topic>star tracking</topic><topic>Stars</topic><topic>Stellar rotation</topic><topic>Stray light</topic><topic>Tracking</topic><topic>Windows (computer programs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wen-Chiao</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Wen-Chiao</au><au>Jan, Shau-Shiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-09-15</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3301120</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0003-4122-8370</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10210575 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Attitude estimation Attitudes Background noise Centroids Covariance matrices dynamic background Extended Kalman filter Heuristic algorithms Image processing Interference Kalman filters Low pass filters Parameter identification Reference stars Sensors Simulation star sensor star tracking Stars Stellar rotation Stray light Tracking Windows (computer programs) |
title | Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Star%20Tracking%20Algorithm%20Based%20on%20Local%20Dynamic%20Background%20Reduction%20for%20Eliminating%20Stray%20Light%20Interference%20from%20Star%20Spot%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chen,%20Wen-Chiao&rft.date=2023-09-15&rft.volume=23&rft.issue=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3301120&rft_dat=%3Cproquest_RIE%3E2865090680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090680&rft_id=info:pmid/&rft_ieee_id=10210575&rfr_iscdi=true |