Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data

Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-09, Vol.23 (18), p.1-1
Hauptverfasser: Chen, Wen-Chiao, Jan, Shau-Shiun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 18
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Chen, Wen-Chiao
Jan, Shau-Shiun
description Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference.
doi_str_mv 10.1109/JSEN.2023.3301120
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10210575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210575</ieee_id><sourcerecordid>2865090680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhhujiYg-gImHTTwXZ7dd2j0ioGKIJoKJt2bYTmGBdnG7HLj56LbCwdNMJt__T_IFwS2HHuegHl5n47eeABH1ogg4F3AWdLiUaciTOD1v9wjCOEq-LoOrul4DcJXIpBP8zDw6NneoN6ZassF2aZ3xq5I9Yk05sxWbWo1bNjpUWBrdnPVm6ey-ytkH5XvtTYMU1rHx1pSmQt-2zLzDA5ua5cqzSeXJFeSo0sQKZ0v293G2s56N0ON1cFHgtqab0-wGn0_j-fAlnL4_T4aDaaiFin2oiBMmOUjKtVhAkS9SriQqHWtEFMgh0aqvG2IBpIqFUFL3kWJMUaVUQNQN7o-9O2e_91T7bG33rmpeZiLtS1DQT1uKHyntbF07KrKdMyW6Q8Yha0VnreisFZ2dRDeZu2PGENE_XnCQiYx-AfzhfBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090680</pqid></control><display><type>article</type><title>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Wen-Chiao ; Jan, Shau-Shiun</creator><creatorcontrib>Chen, Wen-Chiao ; Jan, Shau-Shiun</creatorcontrib><description>Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3301120</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attitude estimation ; Attitudes ; Background noise ; Centroids ; Covariance matrices ; dynamic background ; Extended Kalman filter ; Heuristic algorithms ; Image processing ; Interference ; Kalman filters ; Low pass filters ; Parameter identification ; Reference stars ; Sensors ; Simulation ; star sensor ; star tracking ; Stars ; Stellar rotation ; Stray light ; Tracking ; Windows (computer programs)</subject><ispartof>IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</citedby><cites>FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</cites><orcidid>0000-0002-0863-947X ; 0000-0003-4122-8370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10210575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Wen-Chiao</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><title>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference.</description><subject>Algorithms</subject><subject>Attitude estimation</subject><subject>Attitudes</subject><subject>Background noise</subject><subject>Centroids</subject><subject>Covariance matrices</subject><subject>dynamic background</subject><subject>Extended Kalman filter</subject><subject>Heuristic algorithms</subject><subject>Image processing</subject><subject>Interference</subject><subject>Kalman filters</subject><subject>Low pass filters</subject><subject>Parameter identification</subject><subject>Reference stars</subject><subject>Sensors</subject><subject>Simulation</subject><subject>star sensor</subject><subject>star tracking</subject><subject>Stars</subject><subject>Stellar rotation</subject><subject>Stray light</subject><subject>Tracking</subject><subject>Windows (computer programs)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhhujiYg-gImHTTwXZ7dd2j0ioGKIJoKJt2bYTmGBdnG7HLj56LbCwdNMJt__T_IFwS2HHuegHl5n47eeABH1ogg4F3AWdLiUaciTOD1v9wjCOEq-LoOrul4DcJXIpBP8zDw6NneoN6ZassF2aZ3xq5I9Yk05sxWbWo1bNjpUWBrdnPVm6ey-ytkH5XvtTYMU1rHx1pSmQt-2zLzDA5ua5cqzSeXJFeSo0sQKZ0v293G2s56N0ON1cFHgtqab0-wGn0_j-fAlnL4_T4aDaaiFin2oiBMmOUjKtVhAkS9SriQqHWtEFMgh0aqvG2IBpIqFUFL3kWJMUaVUQNQN7o-9O2e_91T7bG33rmpeZiLtS1DQT1uKHyntbF07KrKdMyW6Q8Yha0VnreisFZ2dRDeZu2PGENE_XnCQiYx-AfzhfBw</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Chen, Wen-Chiao</creator><creator>Jan, Shau-Shiun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0003-4122-8370</orcidid></search><sort><creationdate>20230915</creationdate><title>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</title><author>Chen, Wen-Chiao ; Jan, Shau-Shiun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-9e1ea7d05edc2b0fdb8195a9c4caaa2a107c96c7d0b0e9fb295c6ae4a8a98ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attitude estimation</topic><topic>Attitudes</topic><topic>Background noise</topic><topic>Centroids</topic><topic>Covariance matrices</topic><topic>dynamic background</topic><topic>Extended Kalman filter</topic><topic>Heuristic algorithms</topic><topic>Image processing</topic><topic>Interference</topic><topic>Kalman filters</topic><topic>Low pass filters</topic><topic>Parameter identification</topic><topic>Reference stars</topic><topic>Sensors</topic><topic>Simulation</topic><topic>star sensor</topic><topic>star tracking</topic><topic>Stars</topic><topic>Stellar rotation</topic><topic>Stray light</topic><topic>Tracking</topic><topic>Windows (computer programs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wen-Chiao</creatorcontrib><creatorcontrib>Jan, Shau-Shiun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Wen-Chiao</au><au>Jan, Shau-Shiun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-09-15</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Star sensors determine attitude for spacecraft on the basis of the star spot data detected by them. However, these sensors often encounter interference from stray light, which affects spots' centroid extraction. To handle this problem, star spots must be separated from the background containing stray lights and noise through image processing. The operating parameters of star sensors in the star tracking mode can be used to construct a dynamic background template. In this study, a star tracking algorithm based on an extended Kalman filter (EKF) was designed. This algorithm regularly updates reference star parameters and uses a low-pass filter to identify the background. It performs thresholding in a local region by using mapping windows set according to the centroid locations predicted by the EKF. After reducing the background and eliminating small spikes, star spots can be extracted. A rotation simulation was performed in this study to generate a sequence of stellar images. A rotation period during which sensors would encounter stray light with a small incident angle was selected for the simulation. Furthermore, a limiting magnitude was applied for examining the performance of the developed algorithm with a low-sensitivity camera. In the simulation, the developed tracking algorithm provided continuous and stable attitude estimates despite the occurrence of stray light interference.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3301120</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0863-947X</orcidid><orcidid>https://orcid.org/0000-0003-4122-8370</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10210575
source IEEE Electronic Library (IEL)
subjects Algorithms
Attitude estimation
Attitudes
Background noise
Centroids
Covariance matrices
dynamic background
Extended Kalman filter
Heuristic algorithms
Image processing
Interference
Kalman filters
Low pass filters
Parameter identification
Reference stars
Sensors
Simulation
star sensor
star tracking
Stars
Stellar rotation
Stray light
Tracking
Windows (computer programs)
title Star Tracking Algorithm Based on Local Dynamic Background Reduction for Eliminating Stray Light Interference from Star Spot Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Star%20Tracking%20Algorithm%20Based%20on%20Local%20Dynamic%20Background%20Reduction%20for%20Eliminating%20Stray%20Light%20Interference%20from%20Star%20Spot%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chen,%20Wen-Chiao&rft.date=2023-09-15&rft.volume=23&rft.issue=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3301120&rft_dat=%3Cproquest_RIE%3E2865090680%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090680&rft_id=info:pmid/&rft_ieee_id=10210575&rfr_iscdi=true