DAMUN: A Domain Adaptive Human Activity Recognition Network Based on Multimodal Feature Fusion

There is a rapidly increasing demand for Human Activity Recognition (HAR) due to its extensive applications in various fields such as smart homes, healthcare, nursing, and sports. A more stable and powerful system that can adapt to various complex actual environments with affordable cost of data acq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-09, Vol.23 (18), p.1-1
Hauptverfasser: Feng, Xinxin, Weng, Yuxin, Li, Wenlong, Chen, Pengcheng, Zheng, Haifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 18
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Feng, Xinxin
Weng, Yuxin
Li, Wenlong
Chen, Pengcheng
Zheng, Haifeng
description There is a rapidly increasing demand for Human Activity Recognition (HAR) due to its extensive applications in various fields such as smart homes, healthcare, nursing, and sports. A more stable and powerful system that can adapt to various complex actual environments with affordable cost of data acquisition is needed. In this paper, we propose a domain adaptive human activity recognition network based on multimodal feature fusion (DAMUN) to capture information of data from FMCW radar and USB cameras. In the network, we add a domain discriminator to reduce data differences due to the changes in environments and user habits. In order to reduce the workload of radar data acquisition and processing, we also design a data augmentation model based on a generative adversarial network, which can generate radar data directly from image data. Finally, we implement the real-time application based on the DAMUN on edge computing platforms. The experimental results show that the proposed network achieves obvious advantages over the existing methods and can effectively adapt to different environments. In addition, the network can meet the real-time requirement in the prediction stage, and its average running time is about 0.17s.
doi_str_mv 10.1109/JSEN.2023.3300357
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10209421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10209421</ieee_id><sourcerecordid>2865090359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-f3700b5a276ed58d473e04a2ffa70a698a62a3be4f7cc8bb2abfd89156ba22ea3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1P7LZxFu0rVXaCmrBk8skmUhqk9TdjdJ_b0J78DQfPO8MPJ53yeiIMRrfPL1OliNOuRgJQamQ6sgbMCkjn6kgOu57Qf1AqPdT78zaNaUsVlINvI9xslgtb0lCxk0FZU2SHLau_EEyayvoxqwbSrcjL5g1n3XpyqYmS3S_jfkid2AxJ91i0W5cWTU5bMgUwbUGybS1HXrunRSwsXhxqENvNZ283c_8-fPD430y9zMeB84vhKI0lcBViLmM8kAJpAHwogBFIYwjCDmIFINCZVmUphzSIo9iJsMUOEcQQ-96f3drmu8WrdPrpjV191LzKJQ07pTEHcX2VGYaaw0WemvKCsxOM6p7jbrXqHuN-qCxy1ztMyUi_uM5jQPOxB-qfm6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090359</pqid></control><display><type>article</type><title>DAMUN: A Domain Adaptive Human Activity Recognition Network Based on Multimodal Feature Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Xinxin ; Weng, Yuxin ; Li, Wenlong ; Chen, Pengcheng ; Zheng, Haifeng</creator><creatorcontrib>Feng, Xinxin ; Weng, Yuxin ; Li, Wenlong ; Chen, Pengcheng ; Zheng, Haifeng</creatorcontrib><description>There is a rapidly increasing demand for Human Activity Recognition (HAR) due to its extensive applications in various fields such as smart homes, healthcare, nursing, and sports. A more stable and powerful system that can adapt to various complex actual environments with affordable cost of data acquisition is needed. In this paper, we propose a domain adaptive human activity recognition network based on multimodal feature fusion (DAMUN) to capture information of data from FMCW radar and USB cameras. In the network, we add a domain discriminator to reduce data differences due to the changes in environments and user habits. In order to reduce the workload of radar data acquisition and processing, we also design a data augmentation model based on a generative adversarial network, which can generate radar data directly from image data. Finally, we implement the real-time application based on the DAMUN on edge computing platforms. The experimental results show that the proposed network achieves obvious advantages over the existing methods and can effectively adapt to different environments. In addition, the network can meet the real-time requirement in the prediction stage, and its average running time is about 0.17s.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3300357</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Continuous radiation ; Data acquisition ; Data augmentation ; Edge computing ; Feature extraction ; feature fusion ; FMCW Radar ; Generative adversarial networks ; Human activity recognition ; Radar ; Radar data ; Radar imaging ; Real time ; real-time application ; Run time (computers) ; Sensors ; Smart buildings</subject><ispartof>IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-f3700b5a276ed58d473e04a2ffa70a698a62a3be4f7cc8bb2abfd89156ba22ea3</citedby><cites>FETCH-LOGICAL-c294t-f3700b5a276ed58d473e04a2ffa70a698a62a3be4f7cc8bb2abfd89156ba22ea3</cites><orcidid>0000-0002-2142-721X ; 0000-0003-1166-2280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10209421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10209421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Xinxin</creatorcontrib><creatorcontrib>Weng, Yuxin</creatorcontrib><creatorcontrib>Li, Wenlong</creatorcontrib><creatorcontrib>Chen, Pengcheng</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><title>DAMUN: A Domain Adaptive Human Activity Recognition Network Based on Multimodal Feature Fusion</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>There is a rapidly increasing demand for Human Activity Recognition (HAR) due to its extensive applications in various fields such as smart homes, healthcare, nursing, and sports. A more stable and powerful system that can adapt to various complex actual environments with affordable cost of data acquisition is needed. In this paper, we propose a domain adaptive human activity recognition network based on multimodal feature fusion (DAMUN) to capture information of data from FMCW radar and USB cameras. In the network, we add a domain discriminator to reduce data differences due to the changes in environments and user habits. In order to reduce the workload of radar data acquisition and processing, we also design a data augmentation model based on a generative adversarial network, which can generate radar data directly from image data. Finally, we implement the real-time application based on the DAMUN on edge computing platforms. The experimental results show that the proposed network achieves obvious advantages over the existing methods and can effectively adapt to different environments. In addition, the network can meet the real-time requirement in the prediction stage, and its average running time is about 0.17s.</description><subject>Cameras</subject><subject>Continuous radiation</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Edge computing</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>FMCW Radar</subject><subject>Generative adversarial networks</subject><subject>Human activity recognition</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radar imaging</subject><subject>Real time</subject><subject>real-time application</subject><subject>Run time (computers)</subject><subject>Sensors</subject><subject>Smart buildings</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKs_QPCw4Dl1P7LZxFu0rVXaCmrBk8skmUhqk9TdjdJ_b0J78DQfPO8MPJ53yeiIMRrfPL1OliNOuRgJQamQ6sgbMCkjn6kgOu57Qf1AqPdT78zaNaUsVlINvI9xslgtb0lCxk0FZU2SHLau_EEyayvoxqwbSrcjL5g1n3XpyqYmS3S_jfkid2AxJ91i0W5cWTU5bMgUwbUGybS1HXrunRSwsXhxqENvNZ283c_8-fPD430y9zMeB84vhKI0lcBViLmM8kAJpAHwogBFIYwjCDmIFINCZVmUphzSIo9iJsMUOEcQQ-96f3drmu8WrdPrpjV191LzKJQ07pTEHcX2VGYaaw0WemvKCsxOM6p7jbrXqHuN-qCxy1ztMyUi_uM5jQPOxB-qfm6A</recordid><startdate>20230915</startdate><enddate>20230915</enddate><creator>Feng, Xinxin</creator><creator>Weng, Yuxin</creator><creator>Li, Wenlong</creator><creator>Chen, Pengcheng</creator><creator>Zheng, Haifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid><orcidid>https://orcid.org/0000-0003-1166-2280</orcidid></search><sort><creationdate>20230915</creationdate><title>DAMUN: A Domain Adaptive Human Activity Recognition Network Based on Multimodal Feature Fusion</title><author>Feng, Xinxin ; Weng, Yuxin ; Li, Wenlong ; Chen, Pengcheng ; Zheng, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-f3700b5a276ed58d473e04a2ffa70a698a62a3be4f7cc8bb2abfd89156ba22ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Continuous radiation</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Edge computing</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>FMCW Radar</topic><topic>Generative adversarial networks</topic><topic>Human activity recognition</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radar imaging</topic><topic>Real time</topic><topic>real-time application</topic><topic>Run time (computers)</topic><topic>Sensors</topic><topic>Smart buildings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xinxin</creatorcontrib><creatorcontrib>Weng, Yuxin</creatorcontrib><creatorcontrib>Li, Wenlong</creatorcontrib><creatorcontrib>Chen, Pengcheng</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Xinxin</au><au>Weng, Yuxin</au><au>Li, Wenlong</au><au>Chen, Pengcheng</au><au>Zheng, Haifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DAMUN: A Domain Adaptive Human Activity Recognition Network Based on Multimodal Feature Fusion</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-09-15</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>There is a rapidly increasing demand for Human Activity Recognition (HAR) due to its extensive applications in various fields such as smart homes, healthcare, nursing, and sports. A more stable and powerful system that can adapt to various complex actual environments with affordable cost of data acquisition is needed. In this paper, we propose a domain adaptive human activity recognition network based on multimodal feature fusion (DAMUN) to capture information of data from FMCW radar and USB cameras. In the network, we add a domain discriminator to reduce data differences due to the changes in environments and user habits. In order to reduce the workload of radar data acquisition and processing, we also design a data augmentation model based on a generative adversarial network, which can generate radar data directly from image data. Finally, we implement the real-time application based on the DAMUN on edge computing platforms. The experimental results show that the proposed network achieves obvious advantages over the existing methods and can effectively adapt to different environments. In addition, the network can meet the real-time requirement in the prediction stage, and its average running time is about 0.17s.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3300357</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid><orcidid>https://orcid.org/0000-0003-1166-2280</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-09, Vol.23 (18), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10209421
source IEEE Electronic Library (IEL)
subjects Cameras
Continuous radiation
Data acquisition
Data augmentation
Edge computing
Feature extraction
feature fusion
FMCW Radar
Generative adversarial networks
Human activity recognition
Radar
Radar data
Radar imaging
Real time
real-time application
Run time (computers)
Sensors
Smart buildings
title DAMUN: A Domain Adaptive Human Activity Recognition Network Based on Multimodal Feature Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DAMUN:%20A%20Domain%20Adaptive%20Human%20Activity%20Recognition%20Network%20Based%20on%20Multimodal%20Feature%20Fusion&rft.jtitle=IEEE%20sensors%20journal&rft.au=Feng,%20Xinxin&rft.date=2023-09-15&rft.volume=23&rft.issue=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3300357&rft_dat=%3Cproquest_RIE%3E2865090359%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090359&rft_id=info:pmid/&rft_ieee_id=10209421&rfr_iscdi=true