Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification
In text classification, the traditional attention mechanisms usually focus too much on frequent words, and need extensive labeled data in order to learn. This article proposes a perturbation-based self-supervised attention approach to guide attention learning without any annotation overhead. Specifi...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2023, Vol.31, p.3139-3151 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!