Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification

In text classification, the traditional attention mechanisms usually focus too much on frequent words, and need extensive labeled data in order to learn. This article proposes a perturbation-based self-supervised attention approach to guide attention learning without any annotation overhead. Specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2023, Vol.31, p.3139-3151
Hauptverfasser: Feng, Huawen, Lin, Zhenxi, Ma, Qianli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3151
container_issue
container_start_page 3139
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 31
creator Feng, Huawen
Lin, Zhenxi
Ma, Qianli
description In text classification, the traditional attention mechanisms usually focus too much on frequent words, and need extensive labeled data in order to learn. This article proposes a perturbation-based self-supervised attention approach to guide attention learning without any annotation overhead. Specifically, we add as much noise as possible to all the words in the sentence without changing their semantics and predictions. We hypothesize that words that tolerate more noise are less significant, and we can use this information to refine the attention distribution. Experimental results on three text classification tasks show that our approach can significantly improve the performance of current attention-based models, and is more effective than existing self-supervised methods. We also provide a visualization analysis to verify the effectiveness of our approach.
doi_str_mv 10.1109/TASLP.2023.3302230
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10209221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10209221</ieee_id><sourcerecordid>2851362448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-8a1b278d66246422d4172c5cd376f05e99a91188215e710b23b33eaadb8cf4043</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-AfEQ8Jw6O7tJdo9t8R8ULLR6XTbJBLbUpO4mot_epK3Q08xj3nsDP8ZuOUw5B_2wma2XqykCiqkQgCjggo1QoI61AHn5v6OGazYJYQsAHDKtMzliHyvybedz27qmjuc2UBmtaVfF625P_tsNeta2VA_3qGr8mZo7GyJXRxv6aaPFzobgKlccmm7YVWV3gSanOWbvT4-bxUu8fHt-XcyWcYEya2NleY6ZKtMUZSoRS8kzLJKiFFlaQUJaW825UsgTyjjkKHIhyNoyV0UlQYoxuz_27n3z1VFozbbpfN2_NKgSLvpeqXoXHl2Fb0LwVJm9d5_W_xoOZkBoDgjNgNCcEPahu2PIEdFZAEEjcvEH_PJsYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851362448</pqid></control><display><type>article</type><title>Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Feng, Huawen ; Lin, Zhenxi ; Ma, Qianli</creator><creatorcontrib>Feng, Huawen ; Lin, Zhenxi ; Ma, Qianli</creatorcontrib><description>In text classification, the traditional attention mechanisms usually focus too much on frequent words, and need extensive labeled data in order to learn. This article proposes a perturbation-based self-supervised attention approach to guide attention learning without any annotation overhead. Specifically, we add as much noise as possible to all the words in the sentence without changing their semantics and predictions. We hypothesize that words that tolerate more noise are less significant, and we can use this information to refine the attention distribution. Experimental results on three text classification tasks show that our approach can significantly improve the performance of current attention-based models, and is more effective than existing self-supervised methods. We also provide a visualization analysis to verify the effectiveness of our approach.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2023.3302230</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Attention bias ; Classification ; Noise tolerance ; Perturbation ; Perturbation methods ; Predictive models ; self-supervised learning ; Semantics ; Task analysis ; Text categorization ; text classification ; Training ; Words (language)</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2023, Vol.31, p.3139-3151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-8a1b278d66246422d4172c5cd376f05e99a91188215e710b23b33eaadb8cf4043</cites><orcidid>0000-0002-9704-1479 ; 0000-0002-9356-2883 ; 0000-0003-1264-6549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10209221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10209221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Huawen</creatorcontrib><creatorcontrib>Lin, Zhenxi</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><title>Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>In text classification, the traditional attention mechanisms usually focus too much on frequent words, and need extensive labeled data in order to learn. This article proposes a perturbation-based self-supervised attention approach to guide attention learning without any annotation overhead. Specifically, we add as much noise as possible to all the words in the sentence without changing their semantics and predictions. We hypothesize that words that tolerate more noise are less significant, and we can use this information to refine the attention distribution. Experimental results on three text classification tasks show that our approach can significantly improve the performance of current attention-based models, and is more effective than existing self-supervised methods. We also provide a visualization analysis to verify the effectiveness of our approach.</description><subject>Annotations</subject><subject>Attention bias</subject><subject>Classification</subject><subject>Noise tolerance</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Predictive models</subject><subject>self-supervised learning</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Text categorization</subject><subject>text classification</subject><subject>Training</subject><subject>Words (language)</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-AfEQ8Jw6O7tJdo9t8R8ULLR6XTbJBLbUpO4mot_epK3Q08xj3nsDP8ZuOUw5B_2wma2XqykCiqkQgCjggo1QoI61AHn5v6OGazYJYQsAHDKtMzliHyvybedz27qmjuc2UBmtaVfF625P_tsNeta2VA_3qGr8mZo7GyJXRxv6aaPFzobgKlccmm7YVWV3gSanOWbvT4-bxUu8fHt-XcyWcYEya2NleY6ZKtMUZSoRS8kzLJKiFFlaQUJaW825UsgTyjjkKHIhyNoyV0UlQYoxuz_27n3z1VFozbbpfN2_NKgSLvpeqXoXHl2Fb0LwVJm9d5_W_xoOZkBoDgjNgNCcEPahu2PIEdFZAEEjcvEH_PJsYQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Feng, Huawen</creator><creator>Lin, Zhenxi</creator><creator>Ma, Qianli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9704-1479</orcidid><orcidid>https://orcid.org/0000-0002-9356-2883</orcidid><orcidid>https://orcid.org/0000-0003-1264-6549</orcidid></search><sort><creationdate>2023</creationdate><title>Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification</title><author>Feng, Huawen ; Lin, Zhenxi ; Ma, Qianli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-8a1b278d66246422d4172c5cd376f05e99a91188215e710b23b33eaadb8cf4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Attention bias</topic><topic>Classification</topic><topic>Noise tolerance</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Predictive models</topic><topic>self-supervised learning</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Text categorization</topic><topic>text classification</topic><topic>Training</topic><topic>Words (language)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Huawen</creatorcontrib><creatorcontrib>Lin, Zhenxi</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Huawen</au><au>Lin, Zhenxi</au><au>Ma, Qianli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2023</date><risdate>2023</risdate><volume>31</volume><spage>3139</spage><epage>3151</epage><pages>3139-3151</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>In text classification, the traditional attention mechanisms usually focus too much on frequent words, and need extensive labeled data in order to learn. This article proposes a perturbation-based self-supervised attention approach to guide attention learning without any annotation overhead. Specifically, we add as much noise as possible to all the words in the sentence without changing their semantics and predictions. We hypothesize that words that tolerate more noise are less significant, and we can use this information to refine the attention distribution. Experimental results on three text classification tasks show that our approach can significantly improve the performance of current attention-based models, and is more effective than existing self-supervised methods. We also provide a visualization analysis to verify the effectiveness of our approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2023.3302230</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9704-1479</orcidid><orcidid>https://orcid.org/0000-0002-9356-2883</orcidid><orcidid>https://orcid.org/0000-0003-1264-6549</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2023, Vol.31, p.3139-3151
issn 2329-9290
2329-9304
language eng
recordid cdi_ieee_primary_10209221
source IEEE/IET Electronic Library (IEL)
subjects Annotations
Attention bias
Classification
Noise tolerance
Perturbation
Perturbation methods
Predictive models
self-supervised learning
Semantics
Task analysis
Text categorization
text classification
Training
Words (language)
title Perturbation-Based Self-Supervised Attention for Attention Bias in Text Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation-Based%20Self-Supervised%20Attention%20for%20Attention%20Bias%20in%20Text%20Classification&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Feng,%20Huawen&rft.date=2023&rft.volume=31&rft.spage=3139&rft.epage=3151&rft.pages=3139-3151&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2023.3302230&rft_dat=%3Cproquest_RIE%3E2851362448%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851362448&rft_id=info:pmid/&rft_ieee_id=10209221&rfr_iscdi=true