On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)

Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2023-11, Vol.69 (11), p.1-1
Hauptverfasser: Zhang, Tao, Lian, Yanlu, Ge, Gennian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 11
container_start_page 1
container_title IEEE transactions on information theory
container_volume 69
creator Zhang, Tao
Lian, Yanlu
Ge, Gennian
description Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).
doi_str_mv 10.1109/TIT.2023.3301669
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10207825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207825</ieee_id><sourcerecordid>2879382655</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-79d2cc8bd66b6fcc219f292dc75cc56b7ed56c73b1f402122ee9bb947f944e503</originalsourceid><addsrcrecordid>eNotjk1Lw0AYhBdRsFbvHjwseFFo4u67X9mjLVoLhV7qxUvIbt6ULWlSN9tD_72BCgPDwMPMEPLIWc45s2_b1TYHBiIXgnGt7RWZcKVMZrWS12TCGC8yK2VxS-6GYT9GqThMyHLT0bZKKXikKbSh2w20b-hPR92ZtuEQEtb0UO26kE41Uoyxj9RVbTvQ-Us3ozCjfNTrPblpqnbAh3-fku_Pj-3iK1tvlqvF-zoLXMiUGVuD94WrtXa68R64bcBC7Y3yXmlnsFbaG-F4IxlwAETrnJWmGb-jYmJKni-9x9j_nnBI5b4_xW6cLKEwVhSglRqppwsVELE8xnCo4rnkDJgpQIk_rNBUYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879382655</pqid></control><display><type>article</type><title>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Tao ; Lian, Yanlu ; Ge, Gennian</creator><creatorcontrib>Zhang, Tao ; Lian, Yanlu ; Ge, Gennian</creatorcontrib><description>Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3301669</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ash ; Codes ; Errors ; flash memory ; Flash memory (computers) ; Germanium ; Lattice tiling ; Lattices ; limited magnitude errors ; Production ; Shape ; Symbols ; Tiling</subject><ispartof>IEEE transactions on information theory, 2023-11, Vol.69 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9914-0382 ; 0000-0002-1535-0754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10207825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lian, Yanlu</creatorcontrib><creatorcontrib>Ge, Gennian</creatorcontrib><title>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).</description><subject>Ash</subject><subject>Codes</subject><subject>Errors</subject><subject>flash memory</subject><subject>Flash memory (computers)</subject><subject>Germanium</subject><subject>Lattice tiling</subject><subject>Lattices</subject><subject>limited magnitude errors</subject><subject>Production</subject><subject>Shape</subject><subject>Symbols</subject><subject>Tiling</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjk1Lw0AYhBdRsFbvHjwseFFo4u67X9mjLVoLhV7qxUvIbt6ULWlSN9tD_72BCgPDwMPMEPLIWc45s2_b1TYHBiIXgnGt7RWZcKVMZrWS12TCGC8yK2VxS-6GYT9GqThMyHLT0bZKKXikKbSh2w20b-hPR92ZtuEQEtb0UO26kE41Uoyxj9RVbTvQ-Us3ozCjfNTrPblpqnbAh3-fku_Pj-3iK1tvlqvF-zoLXMiUGVuD94WrtXa68R64bcBC7Y3yXmlnsFbaG-F4IxlwAETrnJWmGb-jYmJKni-9x9j_nnBI5b4_xW6cLKEwVhSglRqppwsVELE8xnCo4rnkDJgpQIk_rNBUYQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Tao</creator><creator>Lian, Yanlu</creator><creator>Ge, Gennian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9914-0382</orcidid><orcidid>https://orcid.org/0000-0002-1535-0754</orcidid></search><sort><creationdate>20231101</creationdate><title>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</title><author>Zhang, Tao ; Lian, Yanlu ; Ge, Gennian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-79d2cc8bd66b6fcc219f292dc75cc56b7ed56c73b1f402122ee9bb947f944e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ash</topic><topic>Codes</topic><topic>Errors</topic><topic>flash memory</topic><topic>Flash memory (computers)</topic><topic>Germanium</topic><topic>Lattice tiling</topic><topic>Lattices</topic><topic>limited magnitude errors</topic><topic>Production</topic><topic>Shape</topic><topic>Symbols</topic><topic>Tiling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lian, Yanlu</creatorcontrib><creatorcontrib>Ge, Gennian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Tao</au><au>Lian, Yanlu</au><au>Ge, Gennian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>69</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3301669</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9914-0382</orcidid><orcidid>https://orcid.org/0000-0002-1535-0754</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2023-11, Vol.69 (11), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_10207825
source IEEE Electronic Library (IEL)
subjects Ash
Codes
Errors
flash memory
Flash memory (computers)
Germanium
Lattice tiling
Lattices
limited magnitude errors
Production
Shape
Symbols
Tiling
title On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20lattice%20tilings%20of%20Zn%20by%20limited%20magnitude%20error%20balls%20B(n,%202,%201,%201)&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhang,%20Tao&rft.date=2023-11-01&rft.volume=69&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3301669&rft_dat=%3Cproquest_RIE%3E2879382655%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879382655&rft_id=info:pmid/&rft_ieee_id=10207825&rfr_iscdi=true