On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)
Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2023-11, Vol.69 (11), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | IEEE transactions on information theory |
container_volume | 69 |
creator | Zhang, Tao Lian, Yanlu Ge, Gennian |
description | Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1). |
doi_str_mv | 10.1109/TIT.2023.3301669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10207825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207825</ieee_id><sourcerecordid>2879382655</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-79d2cc8bd66b6fcc219f292dc75cc56b7ed56c73b1f402122ee9bb947f944e503</originalsourceid><addsrcrecordid>eNotjk1Lw0AYhBdRsFbvHjwseFFo4u67X9mjLVoLhV7qxUvIbt6ULWlSN9tD_72BCgPDwMPMEPLIWc45s2_b1TYHBiIXgnGt7RWZcKVMZrWS12TCGC8yK2VxS-6GYT9GqThMyHLT0bZKKXikKbSh2w20b-hPR92ZtuEQEtb0UO26kE41Uoyxj9RVbTvQ-Us3ozCjfNTrPblpqnbAh3-fku_Pj-3iK1tvlqvF-zoLXMiUGVuD94WrtXa68R64bcBC7Y3yXmlnsFbaG-F4IxlwAETrnJWmGb-jYmJKni-9x9j_nnBI5b4_xW6cLKEwVhSglRqppwsVELE8xnCo4rnkDJgpQIk_rNBUYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879382655</pqid></control><display><type>article</type><title>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Tao ; Lian, Yanlu ; Ge, Gennian</creator><creatorcontrib>Zhang, Tao ; Lian, Yanlu ; Ge, Gennian</creatorcontrib><description>Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3301669</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ash ; Codes ; Errors ; flash memory ; Flash memory (computers) ; Germanium ; Lattice tiling ; Lattices ; limited magnitude errors ; Production ; Shape ; Symbols ; Tiling</subject><ispartof>IEEE transactions on information theory, 2023-11, Vol.69 (11), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9914-0382 ; 0000-0002-1535-0754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10207825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lian, Yanlu</creatorcontrib><creatorcontrib>Ge, Gennian</creatorcontrib><title>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).</description><subject>Ash</subject><subject>Codes</subject><subject>Errors</subject><subject>flash memory</subject><subject>Flash memory (computers)</subject><subject>Germanium</subject><subject>Lattice tiling</subject><subject>Lattices</subject><subject>limited magnitude errors</subject><subject>Production</subject><subject>Shape</subject><subject>Symbols</subject><subject>Tiling</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjk1Lw0AYhBdRsFbvHjwseFFo4u67X9mjLVoLhV7qxUvIbt6ULWlSN9tD_72BCgPDwMPMEPLIWc45s2_b1TYHBiIXgnGt7RWZcKVMZrWS12TCGC8yK2VxS-6GYT9GqThMyHLT0bZKKXikKbSh2w20b-hPR92ZtuEQEtb0UO26kE41Uoyxj9RVbTvQ-Us3ozCjfNTrPblpqnbAh3-fku_Pj-3iK1tvlqvF-zoLXMiUGVuD94WrtXa68R64bcBC7Y3yXmlnsFbaG-F4IxlwAETrnJWmGb-jYmJKni-9x9j_nnBI5b4_xW6cLKEwVhSglRqppwsVELE8xnCo4rnkDJgpQIk_rNBUYQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhang, Tao</creator><creator>Lian, Yanlu</creator><creator>Ge, Gennian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9914-0382</orcidid><orcidid>https://orcid.org/0000-0002-1535-0754</orcidid></search><sort><creationdate>20231101</creationdate><title>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</title><author>Zhang, Tao ; Lian, Yanlu ; Ge, Gennian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-79d2cc8bd66b6fcc219f292dc75cc56b7ed56c73b1f402122ee9bb947f944e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ash</topic><topic>Codes</topic><topic>Errors</topic><topic>flash memory</topic><topic>Flash memory (computers)</topic><topic>Germanium</topic><topic>Lattice tiling</topic><topic>Lattices</topic><topic>limited magnitude errors</topic><topic>Production</topic><topic>Shape</topic><topic>Symbols</topic><topic>Tiling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Lian, Yanlu</creatorcontrib><creatorcontrib>Ge, Gennian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Tao</au><au>Lian, Yanlu</au><au>Ge, Gennian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1)</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>69</volume><issue>11</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Limited magnitude error model has applications in flash memory. In this model, a perfect code is equivalent to a tiling of Z n by limited magnitude error balls. In this paper, we give a complete classification of lattice tilings of Z n by limited magnitude error balls B ( n , 2, 1, 1).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3301669</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9914-0382</orcidid><orcidid>https://orcid.org/0000-0002-1535-0754</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2023-11, Vol.69 (11), p.1-1 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_10207825 |
source | IEEE Electronic Library (IEL) |
subjects | Ash Codes Errors flash memory Flash memory (computers) Germanium Lattice tiling Lattices limited magnitude errors Production Shape Symbols Tiling |
title | On lattice tilings of Zn by limited magnitude error balls B(n, 2, 1, 1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20lattice%20tilings%20of%20Zn%20by%20limited%20magnitude%20error%20balls%20B(n,%202,%201,%201)&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Zhang,%20Tao&rft.date=2023-11-01&rft.volume=69&rft.issue=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3301669&rft_dat=%3Cproquest_RIE%3E2879382655%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2879382655&rft_id=info:pmid/&rft_ieee_id=10207825&rfr_iscdi=true |