Detection of dynamic rhythms of electroencephalography by using wavelet packets decomposition

Wavelet packet decomposition is used to investigate. the time-varying characteristics of clinical EEG signals. On the basis of the nonstationary nature of clinical EEG rhythms, wavelet packet analysis is employed for designing filters with different frequency characteristics to detect 4 kinds of EEG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Minfen Shen, Lisha Sun, Chan, F.H.Y.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1868 vol.2
container_issue
container_start_page 1865
container_title
container_volume 2
creator Minfen Shen
Lisha Sun
Chan, F.H.Y.
description Wavelet packet decomposition is used to investigate. the time-varying characteristics of clinical EEG signals. On the basis of the nonstationary nature of clinical EEG rhythms, wavelet packet analysis is employed for designing filters with different frequency characteristics to detect 4 kinds of EEG rhythms. The coefficients of wavelet transformation corresponding to the rhythms are used to form the dynamic brain electrical activity mapping (DBEAM). In order to understand the dynamic rhythms of the EEG, some clinical EEG are analyzed and compared. It is indicated from the experimental results that the dynamic characteristics of clinical brain electrical activities can be provided in terms of wavelet packet decomposition.
doi_str_mv 10.1109/IEMBS.2001.1020588
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1020588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1020588</ieee_id><sourcerecordid>1020588</sourcerecordid><originalsourceid>FETCH-ieee_primary_10205883</originalsourceid><addsrcrecordid>eNp9j8FOwzAQRC0oEhXND8DFP5B0ncSNfQWK2gMnOHBBlXG3jSGJLduA_Pe4Us-MRlpp3milIeSWQcUYyOV2_Xz_UtUArGJQAxfigswZ56JsV4xfkkJ2ArKbrmaMzzID2ZYr0b1dkyKET8hqZNvIek7eHzGijsZO1B7oPk1qNJr6PsV-DKcIh4y9xUmj69Vgj165PtGPRL-DmY70V_3kSqRO6S-Mge5R29HZYE4_F-TqoIaAxfnekLun9evDpjSIuHPejMqn3XlE8z_9A6e5SaE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of dynamic rhythms of electroencephalography by using wavelet packets decomposition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Minfen Shen ; Lisha Sun ; Chan, F.H.Y.</creator><creatorcontrib>Minfen Shen ; Lisha Sun ; Chan, F.H.Y.</creatorcontrib><description>Wavelet packet decomposition is used to investigate. the time-varying characteristics of clinical EEG signals. On the basis of the nonstationary nature of clinical EEG rhythms, wavelet packet analysis is employed for designing filters with different frequency characteristics to detect 4 kinds of EEG rhythms. The coefficients of wavelet transformation corresponding to the rhythms are used to form the dynamic brain electrical activity mapping (DBEAM). In order to understand the dynamic rhythms of the EEG, some clinical EEG are analyzed and compared. It is indicated from the experimental results that the dynamic characteristics of clinical brain electrical activities can be provided in terms of wavelet packet decomposition.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9780780372115</identifier><identifier>ISBN: 0780372115</identifier><identifier>EISSN: 1558-4615</identifier><identifier>DOI: 10.1109/IEMBS.2001.1020588</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain ; Electroencephalography ; Frequency ; Rhythm ; Signal analysis ; Signal processing ; Spectral analysis ; Transient analysis ; Wavelet analysis ; Wavelet packets</subject><ispartof>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.2, p.1865-1868 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1020588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1020588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minfen Shen</creatorcontrib><creatorcontrib>Lisha Sun</creatorcontrib><creatorcontrib>Chan, F.H.Y.</creatorcontrib><title>Detection of dynamic rhythms of electroencephalography by using wavelet packets decomposition</title><title>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>Wavelet packet decomposition is used to investigate. the time-varying characteristics of clinical EEG signals. On the basis of the nonstationary nature of clinical EEG rhythms, wavelet packet analysis is employed for designing filters with different frequency characteristics to detect 4 kinds of EEG rhythms. The coefficients of wavelet transformation corresponding to the rhythms are used to form the dynamic brain electrical activity mapping (DBEAM). In order to understand the dynamic rhythms of the EEG, some clinical EEG are analyzed and compared. It is indicated from the experimental results that the dynamic characteristics of clinical brain electrical activities can be provided in terms of wavelet packet decomposition.</description><subject>Brain</subject><subject>Electroencephalography</subject><subject>Frequency</subject><subject>Rhythm</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Spectral analysis</subject><subject>Transient analysis</subject><subject>Wavelet analysis</subject><subject>Wavelet packets</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>9780780372115</isbn><isbn>0780372115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j8FOwzAQRC0oEhXND8DFP5B0ncSNfQWK2gMnOHBBlXG3jSGJLduA_Pe4Us-MRlpp3milIeSWQcUYyOV2_Xz_UtUArGJQAxfigswZ56JsV4xfkkJ2ArKbrmaMzzID2ZYr0b1dkyKET8hqZNvIek7eHzGijsZO1B7oPk1qNJr6PsV-DKcIh4y9xUmj69Vgj165PtGPRL-DmY70V_3kSqRO6S-Mge5R29HZYE4_F-TqoIaAxfnekLun9evDpjSIuHPejMqn3XlE8z_9A6e5SaE</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Minfen Shen</creator><creator>Lisha Sun</creator><creator>Chan, F.H.Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Detection of dynamic rhythms of electroencephalography by using wavelet packets decomposition</title><author>Minfen Shen ; Lisha Sun ; Chan, F.H.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_10205883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Brain</topic><topic>Electroencephalography</topic><topic>Frequency</topic><topic>Rhythm</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Spectral analysis</topic><topic>Transient analysis</topic><topic>Wavelet analysis</topic><topic>Wavelet packets</topic><toplevel>online_resources</toplevel><creatorcontrib>Minfen Shen</creatorcontrib><creatorcontrib>Lisha Sun</creatorcontrib><creatorcontrib>Chan, F.H.Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minfen Shen</au><au>Lisha Sun</au><au>Chan, F.H.Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of dynamic rhythms of electroencephalography by using wavelet packets decomposition</atitle><btitle>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2001</date><risdate>2001</risdate><volume>2</volume><spage>1865</spage><epage>1868 vol.2</epage><pages>1865-1868 vol.2</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>9780780372115</isbn><isbn>0780372115</isbn><abstract>Wavelet packet decomposition is used to investigate. the time-varying characteristics of clinical EEG signals. On the basis of the nonstationary nature of clinical EEG rhythms, wavelet packet analysis is employed for designing filters with different frequency characteristics to detect 4 kinds of EEG rhythms. The coefficients of wavelet transformation corresponding to the rhythms are used to form the dynamic brain electrical activity mapping (DBEAM). In order to understand the dynamic rhythms of the EEG, some clinical EEG are analyzed and compared. It is indicated from the experimental results that the dynamic characteristics of clinical brain electrical activities can be provided in terms of wavelet packet decomposition.</abstract><pub>IEEE</pub><doi>10.1109/IEMBS.2001.1020588</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.2, p.1865-1868 vol.2
issn 1094-687X
1558-4615
language eng
recordid cdi_ieee_primary_1020588
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Brain
Electroencephalography
Frequency
Rhythm
Signal analysis
Signal processing
Spectral analysis
Transient analysis
Wavelet analysis
Wavelet packets
title Detection of dynamic rhythms of electroencephalography by using wavelet packets decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20dynamic%20rhythms%20of%20electroencephalography%20by%20using%20wavelet%20packets%20decomposition&rft.btitle=2001%20Conference%20Proceedings%20of%20the%2023rd%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Minfen%20Shen&rft.date=2001&rft.volume=2&rft.spage=1865&rft.epage=1868%20vol.2&rft.pages=1865-1868%20vol.2&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9780780372115&rft.isbn_list=0780372115&rft_id=info:doi/10.1109/IEMBS.2001.1020588&rft_dat=%3Cieee_6IE%3E1020588%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1020588&rfr_iscdi=true