Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing

With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned ae...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-01, Vol.11 (1), p.1-1
Hauptverfasser: Li, Linpei, Guan, Wanqing, Zhao, Chuan, Su, Yu, Huo, Jiahao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE internet of things journal
container_volume 11
creator Li, Linpei
Guan, Wanqing
Zhao, Chuan
Su, Yu
Huo, Jiahao
description With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes.
doi_str_mv 10.1109/JIOT.2023.3300700
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10198543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10198543</ieee_id><sourcerecordid>2906591918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhkNpoWL9AYUeFnpt7OxHonsUq22KRanpeUk2u7oSd9NsLPjvu6IHTzPDvM8MPFH0iGGIMfDXz2yZDwkQOqQUYARwE_UIJaOYpSm5vervo4H3OwAIWIJ52ouavC12SnauPaJVXVhr7OYFrbaFV2i9NbpDb8qbjUWFrVDm8jD-Gak8mnjvpCk64ywyFs3rYyDj72wdh43xnarQlytNrdCs2ig0dfvm0IXIQ3Sni9qrwaX2o5_5LJ9-xIvlezadLGJJOOtiloyrUrMUUsqSRFGgpdQVUcCJJKnSWI4Y55RzmXINmGgqSx46yjUDyYD2o-fz3aZ1vwflO7Fzh9aGl4JwSBOOOR6HFD6nZOu8b5UWTWv2RXsUGMTJrTi5FSe34uI2ME9nxiilrvKYjxNG6T8XlnQj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906591918</pqid></control><display><type>article</type><title>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Linpei ; Guan, Wanqing ; Zhao, Chuan ; Su, Yu ; Huo, Jiahao</creator><creatorcontrib>Li, Linpei ; Guan, Wanqing ; Zhao, Chuan ; Su, Yu ; Huo, Jiahao</creatorcontrib><description>With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3300700</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Costs ; deep learning ; Edge computing ; Energy consumption ; Flight ; intelligent reflecting surface ; Internet of Things ; Mobile computing ; mobile edge computing ; Optimization ; Phase shift ; Resource management ; Servers ; Task analysis ; Trajectory planning ; Unmanned aerial vehicles</subject><ispartof>IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</citedby><cites>FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</cites><orcidid>0000-0002-5205-7936 ; 0000-0002-4674-1723 ; 0000-0002-3181-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10198543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10198543$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Linpei</creatorcontrib><creatorcontrib>Guan, Wanqing</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><creatorcontrib>Huo, Jiahao</creatorcontrib><title>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Costs</subject><subject>deep learning</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Flight</subject><subject>intelligent reflecting surface</subject><subject>Internet of Things</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Optimization</subject><subject>Phase shift</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAQhkNpoWL9AYUeFnpt7OxHonsUq22KRanpeUk2u7oSd9NsLPjvu6IHTzPDvM8MPFH0iGGIMfDXz2yZDwkQOqQUYARwE_UIJaOYpSm5vervo4H3OwAIWIJ52ouavC12SnauPaJVXVhr7OYFrbaFV2i9NbpDb8qbjUWFrVDm8jD-Gak8mnjvpCk64ywyFs3rYyDj72wdh43xnarQlytNrdCs2ig0dfvm0IXIQ3Sni9qrwaX2o5_5LJ9-xIvlezadLGJJOOtiloyrUrMUUsqSRFGgpdQVUcCJJKnSWI4Y55RzmXINmGgqSx46yjUDyYD2o-fz3aZ1vwflO7Fzh9aGl4JwSBOOOR6HFD6nZOu8b5UWTWv2RXsUGMTJrTi5FSe34uI2ME9nxiilrvKYjxNG6T8XlnQj</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Linpei</creator><creator>Guan, Wanqing</creator><creator>Zhao, Chuan</creator><creator>Su, Yu</creator><creator>Huo, Jiahao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5205-7936</orcidid><orcidid>https://orcid.org/0000-0002-4674-1723</orcidid><orcidid>https://orcid.org/0000-0002-3181-2816</orcidid></search><sort><creationdate>20240101</creationdate><title>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</title><author>Li, Linpei ; Guan, Wanqing ; Zhao, Chuan ; Su, Yu ; Huo, Jiahao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Costs</topic><topic>deep learning</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Flight</topic><topic>intelligent reflecting surface</topic><topic>Internet of Things</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Optimization</topic><topic>Phase shift</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Linpei</creatorcontrib><creatorcontrib>Guan, Wanqing</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><creatorcontrib>Huo, Jiahao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Linpei</au><au>Guan, Wanqing</au><au>Zhao, Chuan</au><au>Su, Yu</au><au>Huo, Jiahao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3300700</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5205-7936</orcidid><orcidid>https://orcid.org/0000-0002-4674-1723</orcidid><orcidid>https://orcid.org/0000-0002-3181-2816</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10198543
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous aerial vehicles
Costs
deep learning
Edge computing
Energy consumption
Flight
intelligent reflecting surface
Internet of Things
Mobile computing
mobile edge computing
Optimization
Phase shift
Resource management
Servers
Task analysis
Trajectory planning
Unmanned aerial vehicles
title Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20Planning,%20Phase%20Shift%20Design%20and%20IoT%20Devices%20Association%20in%20Flying-RIS-Assisted%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Linpei&rft.date=2024-01-01&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3300700&rft_dat=%3Cproquest_RIE%3E2906591918%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906591918&rft_id=info:pmid/&rft_ieee_id=10198543&rfr_iscdi=true