Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing
With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned ae...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-01, Vol.11 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Li, Linpei Guan, Wanqing Zhao, Chuan Su, Yu Huo, Jiahao |
description | With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes. |
doi_str_mv | 10.1109/JIOT.2023.3300700 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10198543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10198543</ieee_id><sourcerecordid>2906591918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</originalsourceid><addsrcrecordid>eNpNkE1rwkAQhkNpoWL9AYUeFnpt7OxHonsUq22KRanpeUk2u7oSd9NsLPjvu6IHTzPDvM8MPFH0iGGIMfDXz2yZDwkQOqQUYARwE_UIJaOYpSm5vervo4H3OwAIWIJ52ouavC12SnauPaJVXVhr7OYFrbaFV2i9NbpDb8qbjUWFrVDm8jD-Gak8mnjvpCk64ywyFs3rYyDj72wdh43xnarQlytNrdCs2ig0dfvm0IXIQ3Sni9qrwaX2o5_5LJ9-xIvlezadLGJJOOtiloyrUrMUUsqSRFGgpdQVUcCJJKnSWI4Y55RzmXINmGgqSx46yjUDyYD2o-fz3aZ1vwflO7Fzh9aGl4JwSBOOOR6HFD6nZOu8b5UWTWv2RXsUGMTJrTi5FSe34uI2ME9nxiilrvKYjxNG6T8XlnQj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906591918</pqid></control><display><type>article</type><title>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Linpei ; Guan, Wanqing ; Zhao, Chuan ; Su, Yu ; Huo, Jiahao</creator><creatorcontrib>Li, Linpei ; Guan, Wanqing ; Zhao, Chuan ; Su, Yu ; Huo, Jiahao</creatorcontrib><description>With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3300700</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous aerial vehicles ; Costs ; deep learning ; Edge computing ; Energy consumption ; Flight ; intelligent reflecting surface ; Internet of Things ; Mobile computing ; mobile edge computing ; Optimization ; Phase shift ; Resource management ; Servers ; Task analysis ; Trajectory planning ; Unmanned aerial vehicles</subject><ispartof>IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</citedby><cites>FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</cites><orcidid>0000-0002-5205-7936 ; 0000-0002-4674-1723 ; 0000-0002-3181-2816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10198543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10198543$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Linpei</creatorcontrib><creatorcontrib>Guan, Wanqing</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><creatorcontrib>Huo, Jiahao</creatorcontrib><title>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes.</description><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Costs</subject><subject>deep learning</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Flight</subject><subject>intelligent reflecting surface</subject><subject>Internet of Things</subject><subject>Mobile computing</subject><subject>mobile edge computing</subject><subject>Optimization</subject><subject>Phase shift</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rwkAQhkNpoWL9AYUeFnpt7OxHonsUq22KRanpeUk2u7oSd9NsLPjvu6IHTzPDvM8MPFH0iGGIMfDXz2yZDwkQOqQUYARwE_UIJaOYpSm5vervo4H3OwAIWIJ52ouavC12SnauPaJVXVhr7OYFrbaFV2i9NbpDb8qbjUWFrVDm8jD-Gak8mnjvpCk64ywyFs3rYyDj72wdh43xnarQlytNrdCs2ig0dfvm0IXIQ3Sni9qrwaX2o5_5LJ9-xIvlezadLGJJOOtiloyrUrMUUsqSRFGgpdQVUcCJJKnSWI4Y55RzmXINmGgqSx46yjUDyYD2o-fz3aZ1vwflO7Fzh9aGl4JwSBOOOR6HFD6nZOu8b5UWTWv2RXsUGMTJrTi5FSe34uI2ME9nxiilrvKYjxNG6T8XlnQj</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Linpei</creator><creator>Guan, Wanqing</creator><creator>Zhao, Chuan</creator><creator>Su, Yu</creator><creator>Huo, Jiahao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5205-7936</orcidid><orcidid>https://orcid.org/0000-0002-4674-1723</orcidid><orcidid>https://orcid.org/0000-0002-3181-2816</orcidid></search><sort><creationdate>20240101</creationdate><title>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</title><author>Li, Linpei ; Guan, Wanqing ; Zhao, Chuan ; Su, Yu ; Huo, Jiahao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-458dbf46063455e303bcfd2e092c26ef1c7499399c69f012f3cb99f039f40c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Costs</topic><topic>deep learning</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Flight</topic><topic>intelligent reflecting surface</topic><topic>Internet of Things</topic><topic>Mobile computing</topic><topic>mobile edge computing</topic><topic>Optimization</topic><topic>Phase shift</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Linpei</creatorcontrib><creatorcontrib>Guan, Wanqing</creatorcontrib><creatorcontrib>Zhao, Chuan</creatorcontrib><creatorcontrib>Su, Yu</creatorcontrib><creatorcontrib>Huo, Jiahao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Linpei</au><au>Guan, Wanqing</au><au>Zhao, Chuan</au><au>Su, Yu</au><au>Huo, Jiahao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the blossom of Internet of Things (IoT) technology, the big data volumes raised by the large number of IoT devices have posed great burden on the communication and computing network. Considering the advantages of reflecting intelligent surface (RIS), mobile edge computing (MEC), and unmanned aerial vehicle (UAV), this paper proposes a flying-RIS-assisted MEC system to assist offloading services to alleviate the ground computation burden in IoT. The UAV equipped with RIS is dispatched to fly over a specific area to assist in offloading the ground's computing mission to MEC server situated nearby access point (AP) in IoT. The cost of the IoT device is introduced as the weighted sum of the device's energy consumption and the time consumed to accomplish all computation tasks. To prolong the lifetime and guarantee the communication quality of the IoT devices, the paper minimizes the sum cost of all IoT devices by collaboratively planning UAV's trajectory, scheduling the IoT devices' association with flying-RIS, and optimizing the phase shift value of each reflecting components. To address the posed non-convex optimization challenge, a deep deterministic policy gradient (DDPG)-based algorithm is brought forward. Besides, the state and action normalization mechanism is used to ease up on the training difficulty. At last, the numerical simulation results prove the superiority of the proposed algorithm compared with other benchmark schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3300700</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5205-7936</orcidid><orcidid>https://orcid.org/0000-0002-4674-1723</orcidid><orcidid>https://orcid.org/0000-0002-3181-2816</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10198543 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous aerial vehicles Costs deep learning Edge computing Energy consumption Flight intelligent reflecting surface Internet of Things Mobile computing mobile edge computing Optimization Phase shift Resource management Servers Task analysis Trajectory planning Unmanned aerial vehicles |
title | Trajectory Planning, Phase Shift Design and IoT Devices Association in Flying-RIS-Assisted Mobile Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20Planning,%20Phase%20Shift%20Design%20and%20IoT%20Devices%20Association%20in%20Flying-RIS-Assisted%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Li,%20Linpei&rft.date=2024-01-01&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3300700&rft_dat=%3Cproquest_RIE%3E2906591918%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906591918&rft_id=info:pmid/&rft_ieee_id=10198543&rfr_iscdi=true |