Transfer Learning for UWB Error Correction and (N)LOS Classification in Multiple Environments

Ultra Wideband (UWB) is a popular technology to address the need for high precision indoor positioning systems in challenging industry 4.0 use cases. In line-of-sight (LOS) environments, UWB positioning errors in the order of 1-10 cm can be achieved. However, in non-line-of-sight (NLOS) conditions,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-02, Vol.11 (3), p.1-1
Hauptverfasser: Fontaine, Jaron, Che, Fuhu, Shahid, Adnan, Herbruggen, Ben Van, Ahmed, Qasim Zeeshan, Abbas, Waqas Bin, Poorter, Eli De
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE internet of things journal
container_volume 11
creator Fontaine, Jaron
Che, Fuhu
Shahid, Adnan
Herbruggen, Ben Van
Ahmed, Qasim Zeeshan
Abbas, Waqas Bin
Poorter, Eli De
description Ultra Wideband (UWB) is a popular technology to address the need for high precision indoor positioning systems in challenging industry 4.0 use cases. In line-of-sight (LOS) environments, UWB positioning errors in the order of 1-10 cm can be achieved. However, in non-line-of-sight (NLOS) conditions, this precision drops significantly, with errors typically >30 cm. Machine learning has been proposed to improve the precision in such NLOS conditions, but is typically environment-specific and lacks generalization to new environments and UWB configurations. As such, it is necessary to collect large datasets to train a neural network for each new environment or UWB configuration. To remedy this, this paper proposes automatic optimizations for transfer learning (TL) deep neural networks towards new environments and UWB configurations. We analyze error correction and (non)-line-of-sight ((N)LOS) classification models, using either feature-or channel impulse response-based (CIR) input data. Our TL solutions show a 50% error improvement and 15% (N)LOS classification accuracy improvement (for both feature-and CIR-based approaches) compared to a model trained in a different environment. We also analyze the impact on TL using a limited number of samples (25 to 400 samples). The highest accuracy is typically achieved by the CIR-based approach, where with only 50 samples from the new mixed (N)LOS environment, we show ±10 cm precision after error correction with 93% (N)LOS detection. The presented results demonstrate high precision UWB localization (from 643 mm to 245 mm) through ML with minimal data collection effort in challenging NLOS environments.
doi_str_mv 10.1109/JIOT.2023.3299319
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10195942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195942</ieee_id><sourcerecordid>2918030241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-5f56a9d0b4f9cb60966bd2f78f35b0c3c4325489873d5dc50090170725283fc43</originalsourceid><addsrcrecordid>eNpNkE9LwzAYxoMoOOY-gOAh4EUPnW-Spm2OWqZOqju44UlCmiaSsaUz6QS_vZ3bYaf3gefPCz-ELgmMCQFx9zKdzccUKBszKgQj4gQNKKN5kmYZPT3S52gU4xIA-honIhugz3lQPloTcGVU8M5_YdsGvPh4wJMQelW2IRjdudZj5Rt883Zbzd5xuVIxOuu0-necx6_bVec2K4Mn_seF1q-N7-IFOrNqFc3ocIdo8TiZl89JNXualvdVomkhuoRbninRQJ1aoesMRJbVDbV5YRmvQTOdMsrTQhQ5a3ijOYAAkkNOOS2Y7d0hut7vbkL7vTWxk8t2G3z_UlJBCmBAU9KnyD6lQxtjMFZuglur8CsJyB1IuQMpdyDlAWTfudp3nDHmKE8EFyllf4gYbVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030241</pqid></control><display><type>article</type><title>Transfer Learning for UWB Error Correction and (N)LOS Classification in Multiple Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Fontaine, Jaron ; Che, Fuhu ; Shahid, Adnan ; Herbruggen, Ben Van ; Ahmed, Qasim Zeeshan ; Abbas, Waqas Bin ; Poorter, Eli De</creator><creatorcontrib>Fontaine, Jaron ; Che, Fuhu ; Shahid, Adnan ; Herbruggen, Ben Van ; Ahmed, Qasim Zeeshan ; Abbas, Waqas Bin ; Poorter, Eli De</creatorcontrib><description>Ultra Wideband (UWB) is a popular technology to address the need for high precision indoor positioning systems in challenging industry 4.0 use cases. In line-of-sight (LOS) environments, UWB positioning errors in the order of 1-10 cm can be achieved. However, in non-line-of-sight (NLOS) conditions, this precision drops significantly, with errors typically &gt;30 cm. Machine learning has been proposed to improve the precision in such NLOS conditions, but is typically environment-specific and lacks generalization to new environments and UWB configurations. As such, it is necessary to collect large datasets to train a neural network for each new environment or UWB configuration. To remedy this, this paper proposes automatic optimizations for transfer learning (TL) deep neural networks towards new environments and UWB configurations. We analyze error correction and (non)-line-of-sight ((N)LOS) classification models, using either feature-or channel impulse response-based (CIR) input data. Our TL solutions show a 50% error improvement and 15% (N)LOS classification accuracy improvement (for both feature-and CIR-based approaches) compared to a model trained in a different environment. We also analyze the impact on TL using a limited number of samples (25 to 400 samples). The highest accuracy is typically achieved by the CIR-based approach, where with only 50 samples from the new mixed (N)LOS environment, we show ±10 cm precision after error correction with 93% (N)LOS detection. The presented results demonstrate high precision UWB localization (from 643 mm to 245 mm) through ML with minimal data collection effort in challenging NLOS environments.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3299319</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>(N)LOS classification ; Accuracy ; Artificial neural networks ; Classification ; Configurations ; Data collection ; Error analysis ; Error correction ; Error correction &amp; detection ; Feature extraction ; Impact analysis ; Impulse response ; Internet of Things ; IP networks ; localization systems ; Machine learning ; Neural networks ; Training ; Transfer learning ; UWB</subject><ispartof>IEEE internet of things journal, 2024-02, Vol.11 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-5f56a9d0b4f9cb60966bd2f78f35b0c3c4325489873d5dc50090170725283fc43</cites><orcidid>0000-0003-1943-6261 ; 0000-0003-3860-1576 ; 0000-0002-0214-5751 ; 0000-0002-3957-5341 ; 0000-0001-8900-4881 ; 0000-0001-5942-9440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10195942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fontaine, Jaron</creatorcontrib><creatorcontrib>Che, Fuhu</creatorcontrib><creatorcontrib>Shahid, Adnan</creatorcontrib><creatorcontrib>Herbruggen, Ben Van</creatorcontrib><creatorcontrib>Ahmed, Qasim Zeeshan</creatorcontrib><creatorcontrib>Abbas, Waqas Bin</creatorcontrib><creatorcontrib>Poorter, Eli De</creatorcontrib><title>Transfer Learning for UWB Error Correction and (N)LOS Classification in Multiple Environments</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Ultra Wideband (UWB) is a popular technology to address the need for high precision indoor positioning systems in challenging industry 4.0 use cases. In line-of-sight (LOS) environments, UWB positioning errors in the order of 1-10 cm can be achieved. However, in non-line-of-sight (NLOS) conditions, this precision drops significantly, with errors typically &gt;30 cm. Machine learning has been proposed to improve the precision in such NLOS conditions, but is typically environment-specific and lacks generalization to new environments and UWB configurations. As such, it is necessary to collect large datasets to train a neural network for each new environment or UWB configuration. To remedy this, this paper proposes automatic optimizations for transfer learning (TL) deep neural networks towards new environments and UWB configurations. We analyze error correction and (non)-line-of-sight ((N)LOS) classification models, using either feature-or channel impulse response-based (CIR) input data. Our TL solutions show a 50% error improvement and 15% (N)LOS classification accuracy improvement (for both feature-and CIR-based approaches) compared to a model trained in a different environment. We also analyze the impact on TL using a limited number of samples (25 to 400 samples). The highest accuracy is typically achieved by the CIR-based approach, where with only 50 samples from the new mixed (N)LOS environment, we show ±10 cm precision after error correction with 93% (N)LOS detection. The presented results demonstrate high precision UWB localization (from 643 mm to 245 mm) through ML with minimal data collection effort in challenging NLOS environments.</description><subject>(N)LOS classification</subject><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Configurations</subject><subject>Data collection</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Error correction &amp; detection</subject><subject>Feature extraction</subject><subject>Impact analysis</subject><subject>Impulse response</subject><subject>Internet of Things</subject><subject>IP networks</subject><subject>localization systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Training</subject><subject>Transfer learning</subject><subject>UWB</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LwzAYxoMoOOY-gOAh4EUPnW-Spm2OWqZOqju44UlCmiaSsaUz6QS_vZ3bYaf3gefPCz-ELgmMCQFx9zKdzccUKBszKgQj4gQNKKN5kmYZPT3S52gU4xIA-honIhugz3lQPloTcGVU8M5_YdsGvPh4wJMQelW2IRjdudZj5Rt883Zbzd5xuVIxOuu0-necx6_bVec2K4Mn_seF1q-N7-IFOrNqFc3ocIdo8TiZl89JNXualvdVomkhuoRbninRQJ1aoesMRJbVDbV5YRmvQTOdMsrTQhQ5a3ijOYAAkkNOOS2Y7d0hut7vbkL7vTWxk8t2G3z_UlJBCmBAU9KnyD6lQxtjMFZuglur8CsJyB1IuQMpdyDlAWTfudp3nDHmKE8EFyllf4gYbVI</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Fontaine, Jaron</creator><creator>Che, Fuhu</creator><creator>Shahid, Adnan</creator><creator>Herbruggen, Ben Van</creator><creator>Ahmed, Qasim Zeeshan</creator><creator>Abbas, Waqas Bin</creator><creator>Poorter, Eli De</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1943-6261</orcidid><orcidid>https://orcid.org/0000-0003-3860-1576</orcidid><orcidid>https://orcid.org/0000-0002-0214-5751</orcidid><orcidid>https://orcid.org/0000-0002-3957-5341</orcidid><orcidid>https://orcid.org/0000-0001-8900-4881</orcidid><orcidid>https://orcid.org/0000-0001-5942-9440</orcidid></search><sort><creationdate>20240201</creationdate><title>Transfer Learning for UWB Error Correction and (N)LOS Classification in Multiple Environments</title><author>Fontaine, Jaron ; Che, Fuhu ; Shahid, Adnan ; Herbruggen, Ben Van ; Ahmed, Qasim Zeeshan ; Abbas, Waqas Bin ; Poorter, Eli De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-5f56a9d0b4f9cb60966bd2f78f35b0c3c4325489873d5dc50090170725283fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>(N)LOS classification</topic><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Configurations</topic><topic>Data collection</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Error correction &amp; detection</topic><topic>Feature extraction</topic><topic>Impact analysis</topic><topic>Impulse response</topic><topic>Internet of Things</topic><topic>IP networks</topic><topic>localization systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Training</topic><topic>Transfer learning</topic><topic>UWB</topic><toplevel>online_resources</toplevel><creatorcontrib>Fontaine, Jaron</creatorcontrib><creatorcontrib>Che, Fuhu</creatorcontrib><creatorcontrib>Shahid, Adnan</creatorcontrib><creatorcontrib>Herbruggen, Ben Van</creatorcontrib><creatorcontrib>Ahmed, Qasim Zeeshan</creatorcontrib><creatorcontrib>Abbas, Waqas Bin</creatorcontrib><creatorcontrib>Poorter, Eli De</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fontaine, Jaron</au><au>Che, Fuhu</au><au>Shahid, Adnan</au><au>Herbruggen, Ben Van</au><au>Ahmed, Qasim Zeeshan</au><au>Abbas, Waqas Bin</au><au>Poorter, Eli De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer Learning for UWB Error Correction and (N)LOS Classification in Multiple Environments</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Ultra Wideband (UWB) is a popular technology to address the need for high precision indoor positioning systems in challenging industry 4.0 use cases. In line-of-sight (LOS) environments, UWB positioning errors in the order of 1-10 cm can be achieved. However, in non-line-of-sight (NLOS) conditions, this precision drops significantly, with errors typically &gt;30 cm. Machine learning has been proposed to improve the precision in such NLOS conditions, but is typically environment-specific and lacks generalization to new environments and UWB configurations. As such, it is necessary to collect large datasets to train a neural network for each new environment or UWB configuration. To remedy this, this paper proposes automatic optimizations for transfer learning (TL) deep neural networks towards new environments and UWB configurations. We analyze error correction and (non)-line-of-sight ((N)LOS) classification models, using either feature-or channel impulse response-based (CIR) input data. Our TL solutions show a 50% error improvement and 15% (N)LOS classification accuracy improvement (for both feature-and CIR-based approaches) compared to a model trained in a different environment. We also analyze the impact on TL using a limited number of samples (25 to 400 samples). The highest accuracy is typically achieved by the CIR-based approach, where with only 50 samples from the new mixed (N)LOS environment, we show ±10 cm precision after error correction with 93% (N)LOS detection. The presented results demonstrate high precision UWB localization (from 643 mm to 245 mm) through ML with minimal data collection effort in challenging NLOS environments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3299319</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1943-6261</orcidid><orcidid>https://orcid.org/0000-0003-3860-1576</orcidid><orcidid>https://orcid.org/0000-0002-0214-5751</orcidid><orcidid>https://orcid.org/0000-0002-3957-5341</orcidid><orcidid>https://orcid.org/0000-0001-8900-4881</orcidid><orcidid>https://orcid.org/0000-0001-5942-9440</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-02, Vol.11 (3), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10195942
source IEEE Electronic Library (IEL)
subjects (N)LOS classification
Accuracy
Artificial neural networks
Classification
Configurations
Data collection
Error analysis
Error correction
Error correction & detection
Feature extraction
Impact analysis
Impulse response
Internet of Things
IP networks
localization systems
Machine learning
Neural networks
Training
Transfer learning
UWB
title Transfer Learning for UWB Error Correction and (N)LOS Classification in Multiple Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20Learning%20for%20UWB%20Error%20Correction%20and%20(N)LOS%20Classification%20in%20Multiple%20Environments&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Fontaine,%20Jaron&rft.date=2024-02-01&rft.volume=11&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3299319&rft_dat=%3Cproquest_RIE%3E2918030241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918030241&rft_id=info:pmid/&rft_ieee_id=10195942&rfr_iscdi=true