Effective Feature-Based Downward-Facing Monocular Visual Odometry

To achieve accurate pose estimation for robots in industrial applications and services, this brief proposes an effective feature-based downward-facing monocular visual odometry technology that uses an affordable sensor system and a systematic optimization approach. To extract more effective features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2024-01, Vol.32 (1), p.266-273
Hauptverfasser: Lee, Hoyong, Lee, Hakjun, Kwak, Inveom, Sung, Chiwon, Han, Soohee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 1
container_start_page 266
container_title IEEE transactions on control systems technology
container_volume 32
creator Lee, Hoyong
Lee, Hakjun
Kwak, Inveom
Sung, Chiwon
Han, Soohee
description To achieve accurate pose estimation for robots in industrial applications and services, this brief proposes an effective feature-based downward-facing monocular visual odometry technology that uses an affordable sensor system and a systematic optimization approach. To extract more effective features simply and efficiently from images of the ground, even for small mobile systems, the proposed visual odometry system is designed in a lightweight and cost-effective manner; we used an easily available LED, a single-channel time-of-flight (ToF) sensor, and a monocular camera. From the extracted features, the potentially irrelevant ones are removed in advance, using a masking algorithm and measured velocity. This enhances feature efficiency and reduces the computational burden. Finally, the optimal pose estimate is explicitly obtained by solving a nonconvex optimization problem, to make the best use of the features. The experiments' results show that our proposed method improves feature tracking ability and pose estimation accuracy.
doi_str_mv 10.1109/TCST.2023.3294843
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10195209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195209</ieee_id><sourcerecordid>2907542823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-5a991ebba5660e38419057f9108b8085fe44858c886874f3f3218ec2f5df432d3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPm3gu9nvbIyKoCYaD6LUp3alZAltsdyX8e5fgwdPM4XnfmTwI3VIyopSYh-XkfTlihPERZ0Zowc_QgEqpMdFKnvc7URwrydUlusp5TQgVkpUDNJ6GAL6tf6CYgWu7BPjRZaiKp7hv9i5VeOZ83XwVb7GJvtu4VHzWuXObYlHFLbTpcI0ugttkuPmbQ_Qxmy4nL3i-eH6djOfY9w-1WDpjKKxWTipFgGtBDZFlMJTolSZaBhBCS-21VroUgQfOqAbPgqyC4KziQ3R_6t2l-N1Bbu06dqnpT1pmSCkF04z3FD1RPsWcEwS7S_XWpYOlxB5N2aMpezRl_0z1mbtTpgaAfzw1khHDfwHLbGNB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907542823</pqid></control><display><type>article</type><title>Effective Feature-Based Downward-Facing Monocular Visual Odometry</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Hoyong ; Lee, Hakjun ; Kwak, Inveom ; Sung, Chiwon ; Han, Soohee</creator><creatorcontrib>Lee, Hoyong ; Lee, Hakjun ; Kwak, Inveom ; Sung, Chiwon ; Han, Soohee</creatorcontrib><description>To achieve accurate pose estimation for robots in industrial applications and services, this brief proposes an effective feature-based downward-facing monocular visual odometry technology that uses an affordable sensor system and a systematic optimization approach. To extract more effective features simply and efficiently from images of the ground, even for small mobile systems, the proposed visual odometry system is designed in a lightweight and cost-effective manner; we used an easily available LED, a single-channel time-of-flight (ToF) sensor, and a monocular camera. From the extracted features, the potentially irrelevant ones are removed in advance, using a masking algorithm and measured velocity. This enhances feature efficiency and reduces the computational burden. Finally, the optimal pose estimate is explicitly obtained by solving a nonconvex optimization problem, to make the best use of the features. The experiments' results show that our proposed method improves feature tracking ability and pose estimation accuracy.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3294843</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cameras ; Downward-facing camera ; Feature extraction ; Industrial applications ; Light emitting diodes ; masking ; monocular visual odometry ; nonconvex optimization ; Optimization ; Optimization methods ; Pose estimation ; robot ; Robot vision systems ; Visual odometry</subject><ispartof>IEEE transactions on control systems technology, 2024-01, Vol.32 (1), p.266-273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-5a991ebba5660e38419057f9108b8085fe44858c886874f3f3218ec2f5df432d3</citedby><cites>FETCH-LOGICAL-c294t-5a991ebba5660e38419057f9108b8085fe44858c886874f3f3218ec2f5df432d3</cites><orcidid>0000-0002-9817-664X ; 0000-0002-5150-4263 ; 0000-0002-8521-7115 ; 0000-0002-9831-3499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10195209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Hoyong</creatorcontrib><creatorcontrib>Lee, Hakjun</creatorcontrib><creatorcontrib>Kwak, Inveom</creatorcontrib><creatorcontrib>Sung, Chiwon</creatorcontrib><creatorcontrib>Han, Soohee</creatorcontrib><title>Effective Feature-Based Downward-Facing Monocular Visual Odometry</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>To achieve accurate pose estimation for robots in industrial applications and services, this brief proposes an effective feature-based downward-facing monocular visual odometry technology that uses an affordable sensor system and a systematic optimization approach. To extract more effective features simply and efficiently from images of the ground, even for small mobile systems, the proposed visual odometry system is designed in a lightweight and cost-effective manner; we used an easily available LED, a single-channel time-of-flight (ToF) sensor, and a monocular camera. From the extracted features, the potentially irrelevant ones are removed in advance, using a masking algorithm and measured velocity. This enhances feature efficiency and reduces the computational burden. Finally, the optimal pose estimate is explicitly obtained by solving a nonconvex optimization problem, to make the best use of the features. The experiments' results show that our proposed method improves feature tracking ability and pose estimation accuracy.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Downward-facing camera</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Light emitting diodes</subject><subject>masking</subject><subject>monocular visual odometry</subject><subject>nonconvex optimization</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Pose estimation</subject><subject>robot</subject><subject>Robot vision systems</subject><subject>Visual odometry</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPm3gu9nvbIyKoCYaD6LUp3alZAltsdyX8e5fgwdPM4XnfmTwI3VIyopSYh-XkfTlihPERZ0Zowc_QgEqpMdFKnvc7URwrydUlusp5TQgVkpUDNJ6GAL6tf6CYgWu7BPjRZaiKp7hv9i5VeOZ83XwVb7GJvtu4VHzWuXObYlHFLbTpcI0ugttkuPmbQ_Qxmy4nL3i-eH6djOfY9w-1WDpjKKxWTipFgGtBDZFlMJTolSZaBhBCS-21VroUgQfOqAbPgqyC4KziQ3R_6t2l-N1Bbu06dqnpT1pmSCkF04z3FD1RPsWcEwS7S_XWpYOlxB5N2aMpezRl_0z1mbtTpgaAfzw1khHDfwHLbGNB</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Lee, Hoyong</creator><creator>Lee, Hakjun</creator><creator>Kwak, Inveom</creator><creator>Sung, Chiwon</creator><creator>Han, Soohee</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9817-664X</orcidid><orcidid>https://orcid.org/0000-0002-5150-4263</orcidid><orcidid>https://orcid.org/0000-0002-8521-7115</orcidid><orcidid>https://orcid.org/0000-0002-9831-3499</orcidid></search><sort><creationdate>202401</creationdate><title>Effective Feature-Based Downward-Facing Monocular Visual Odometry</title><author>Lee, Hoyong ; Lee, Hakjun ; Kwak, Inveom ; Sung, Chiwon ; Han, Soohee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-5a991ebba5660e38419057f9108b8085fe44858c886874f3f3218ec2f5df432d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Downward-facing camera</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Light emitting diodes</topic><topic>masking</topic><topic>monocular visual odometry</topic><topic>nonconvex optimization</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Pose estimation</topic><topic>robot</topic><topic>Robot vision systems</topic><topic>Visual odometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hoyong</creatorcontrib><creatorcontrib>Lee, Hakjun</creatorcontrib><creatorcontrib>Kwak, Inveom</creatorcontrib><creatorcontrib>Sung, Chiwon</creatorcontrib><creatorcontrib>Han, Soohee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Hoyong</au><au>Lee, Hakjun</au><au>Kwak, Inveom</au><au>Sung, Chiwon</au><au>Han, Soohee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Feature-Based Downward-Facing Monocular Visual Odometry</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2024-01</date><risdate>2024</risdate><volume>32</volume><issue>1</issue><spage>266</spage><epage>273</epage><pages>266-273</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>To achieve accurate pose estimation for robots in industrial applications and services, this brief proposes an effective feature-based downward-facing monocular visual odometry technology that uses an affordable sensor system and a systematic optimization approach. To extract more effective features simply and efficiently from images of the ground, even for small mobile systems, the proposed visual odometry system is designed in a lightweight and cost-effective manner; we used an easily available LED, a single-channel time-of-flight (ToF) sensor, and a monocular camera. From the extracted features, the potentially irrelevant ones are removed in advance, using a masking algorithm and measured velocity. This enhances feature efficiency and reduces the computational burden. Finally, the optimal pose estimate is explicitly obtained by solving a nonconvex optimization problem, to make the best use of the features. The experiments' results show that our proposed method improves feature tracking ability and pose estimation accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3294843</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9817-664X</orcidid><orcidid>https://orcid.org/0000-0002-5150-4263</orcidid><orcidid>https://orcid.org/0000-0002-8521-7115</orcidid><orcidid>https://orcid.org/0000-0002-9831-3499</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2024-01, Vol.32 (1), p.266-273
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_10195209
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Downward-facing camera
Feature extraction
Industrial applications
Light emitting diodes
masking
monocular visual odometry
nonconvex optimization
Optimization
Optimization methods
Pose estimation
robot
Robot vision systems
Visual odometry
title Effective Feature-Based Downward-Facing Monocular Visual Odometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Feature-Based%20Downward-Facing%20Monocular%20Visual%20Odometry&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Lee,%20Hoyong&rft.date=2024-01&rft.volume=32&rft.issue=1&rft.spage=266&rft.epage=273&rft.pages=266-273&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3294843&rft_dat=%3Cproquest_RIE%3E2907542823%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907542823&rft_id=info:pmid/&rft_ieee_id=10195209&rfr_iscdi=true