Modeling Hierarchical Seasonality through Low-Rank Tensor Decompositions in Time Series Analysis

Accurately representing periodic behavior is a frequently encountered challenge in modeling time series. This is especially true for observations where multiple, nested seasonalities are present, which is often encountered in data that pertain to collective human activity. In this work, we propose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Barsbey, Melih, Cemgil, Taylan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Barsbey, Melih
Cemgil, Taylan
description Accurately representing periodic behavior is a frequently encountered challenge in modeling time series. This is especially true for observations where multiple, nested seasonalities are present, which is often encountered in data that pertain to collective human activity. In this work, we propose a new method that models seasonality through the multilinear representations that characterize low-rank tensor decompositions. We show that the tensor formalism accurately describes multiple nested periodic patterns, and well-known tensor decompositions can be used to parametrize cyclical patterns, leading to superior generalization and parameter efficiency. Furthermore, we develop a Bayesian variant of our approach which facilitates extraction of these seasonal patterns in an interpretable fashion from large-scale datasets, providing insight into the underlying dynamics that create these emergent behavior. We lastly test our method in missing data imputation, which show that our method couples interpretability with accuracy in time series analysis.
doi_str_mv 10.1109/ACCESS.2023.3298597
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10193757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10193757</ieee_id><doaj_id>oai_doaj_org_article_97dd10a581c84acfba452c7930c06535</doaj_id><sourcerecordid>2853025860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-6a207db0e843440c2a432fb93316eb9b495b0f60bd5c29d60269dde97fce8e213</originalsourceid><addsrcrecordid>eNpNkU1v2zAMhoWhA1pk_QXrQcDOzijJkq1jkPULyDBgyc6aLNGJMsdKJQdF_n3duSjKC4kXfEiQLyFfGcwZA_19sVzertdzDlzMBde11NUncsWZ0oWQQl18qC_Jdc57GKMeJVldkb8_o8cu9Fv6EDDZ5HbB2Y6u0ebY2y4MZzrsUjxtd3QVn4vftv9HN9jnmOgPdPFwjDkMIfaZhp5uwgFHNAXMdDHS5xzyF_K5tV3G67c8I3_ubjfLh2L16_5xuVgVrgQ9FMpyqHwDWJeiLMFxWwreNloIprDRTallA62CxkvHtVfAlfYeddU6rJEzMSOP01wf7d4cUzjYdDbRBvNfiGlrbBqC69DoynsGVtbM1aV1bWNLyV2lBThQcvzTjHybZh1TfDphHsw-ntJ4UDa8lgK4rBWMXWLqcinmnLB938rAvDpjJmfMqzPmzZmRupmogIgfCKZFJSvxAiqYiiA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2853025860</pqid></control><display><type>article</type><title>Modeling Hierarchical Seasonality through Low-Rank Tensor Decompositions in Time Series Analysis</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Barsbey, Melih ; Cemgil, Taylan</creator><creatorcontrib>Barsbey, Melih ; Cemgil, Taylan</creatorcontrib><description>Accurately representing periodic behavior is a frequently encountered challenge in modeling time series. This is especially true for observations where multiple, nested seasonalities are present, which is often encountered in data that pertain to collective human activity. In this work, we propose a new method that models seasonality through the multilinear representations that characterize low-rank tensor decompositions. We show that the tensor formalism accurately describes multiple nested periodic patterns, and well-known tensor decompositions can be used to parametrize cyclical patterns, leading to superior generalization and parameter efficiency. Furthermore, we develop a Bayesian variant of our approach which facilitates extraction of these seasonal patterns in an interpretable fashion from large-scale datasets, providing insight into the underlying dynamics that create these emergent behavior. We lastly test our method in missing data imputation, which show that our method couples interpretability with accuracy in time series analysis.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3298597</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Bayes methods ; Bayesian model selection ; Data models ; Decomposition ; Matrix decomposition ; Missing data ; Modelling ; nonnegative tensor factorization ; Probabilistic logic ; seasonality ; Task analysis ; tensor decomposition ; Tensors ; Time series ; Time series analysis</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-6a207db0e843440c2a432fb93316eb9b495b0f60bd5c29d60269dde97fce8e213</citedby><cites>FETCH-LOGICAL-c409t-6a207db0e843440c2a432fb93316eb9b495b0f60bd5c29d60269dde97fce8e213</cites><orcidid>0000-0003-3404-8849 ; 0000-0003-4463-8455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10193757$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Barsbey, Melih</creatorcontrib><creatorcontrib>Cemgil, Taylan</creatorcontrib><title>Modeling Hierarchical Seasonality through Low-Rank Tensor Decompositions in Time Series Analysis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurately representing periodic behavior is a frequently encountered challenge in modeling time series. This is especially true for observations where multiple, nested seasonalities are present, which is often encountered in data that pertain to collective human activity. In this work, we propose a new method that models seasonality through the multilinear representations that characterize low-rank tensor decompositions. We show that the tensor formalism accurately describes multiple nested periodic patterns, and well-known tensor decompositions can be used to parametrize cyclical patterns, leading to superior generalization and parameter efficiency. Furthermore, we develop a Bayesian variant of our approach which facilitates extraction of these seasonal patterns in an interpretable fashion from large-scale datasets, providing insight into the underlying dynamics that create these emergent behavior. We lastly test our method in missing data imputation, which show that our method couples interpretability with accuracy in time series analysis.</description><subject>Analytical models</subject><subject>Bayes methods</subject><subject>Bayesian model selection</subject><subject>Data models</subject><subject>Decomposition</subject><subject>Matrix decomposition</subject><subject>Missing data</subject><subject>Modelling</subject><subject>nonnegative tensor factorization</subject><subject>Probabilistic logic</subject><subject>seasonality</subject><subject>Task analysis</subject><subject>tensor decomposition</subject><subject>Tensors</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1v2zAMhoWhA1pk_QXrQcDOzijJkq1jkPULyDBgyc6aLNGJMsdKJQdF_n3duSjKC4kXfEiQLyFfGcwZA_19sVzertdzDlzMBde11NUncsWZ0oWQQl18qC_Jdc57GKMeJVldkb8_o8cu9Fv6EDDZ5HbB2Y6u0ebY2y4MZzrsUjxtd3QVn4vftv9HN9jnmOgPdPFwjDkMIfaZhp5uwgFHNAXMdDHS5xzyF_K5tV3G67c8I3_ubjfLh2L16_5xuVgVrgQ9FMpyqHwDWJeiLMFxWwreNloIprDRTallA62CxkvHtVfAlfYeddU6rJEzMSOP01wf7d4cUzjYdDbRBvNfiGlrbBqC69DoynsGVtbM1aV1bWNLyV2lBThQcvzTjHybZh1TfDphHsw-ntJ4UDa8lgK4rBWMXWLqcinmnLB938rAvDpjJmfMqzPmzZmRupmogIgfCKZFJSvxAiqYiiA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Barsbey, Melih</creator><creator>Cemgil, Taylan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3404-8849</orcidid><orcidid>https://orcid.org/0000-0003-4463-8455</orcidid></search><sort><creationdate>20230101</creationdate><title>Modeling Hierarchical Seasonality through Low-Rank Tensor Decompositions in Time Series Analysis</title><author>Barsbey, Melih ; Cemgil, Taylan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-6a207db0e843440c2a432fb93316eb9b495b0f60bd5c29d60269dde97fce8e213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Bayes methods</topic><topic>Bayesian model selection</topic><topic>Data models</topic><topic>Decomposition</topic><topic>Matrix decomposition</topic><topic>Missing data</topic><topic>Modelling</topic><topic>nonnegative tensor factorization</topic><topic>Probabilistic logic</topic><topic>seasonality</topic><topic>Task analysis</topic><topic>tensor decomposition</topic><topic>Tensors</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barsbey, Melih</creatorcontrib><creatorcontrib>Cemgil, Taylan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barsbey, Melih</au><au>Cemgil, Taylan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Hierarchical Seasonality through Low-Rank Tensor Decompositions in Time Series Analysis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurately representing periodic behavior is a frequently encountered challenge in modeling time series. This is especially true for observations where multiple, nested seasonalities are present, which is often encountered in data that pertain to collective human activity. In this work, we propose a new method that models seasonality through the multilinear representations that characterize low-rank tensor decompositions. We show that the tensor formalism accurately describes multiple nested periodic patterns, and well-known tensor decompositions can be used to parametrize cyclical patterns, leading to superior generalization and parameter efficiency. Furthermore, we develop a Bayesian variant of our approach which facilitates extraction of these seasonal patterns in an interpretable fashion from large-scale datasets, providing insight into the underlying dynamics that create these emergent behavior. We lastly test our method in missing data imputation, which show that our method couples interpretability with accuracy in time series analysis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3298597</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3404-8849</orcidid><orcidid>https://orcid.org/0000-0003-4463-8455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10193757
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytical models
Bayes methods
Bayesian model selection
Data models
Decomposition
Matrix decomposition
Missing data
Modelling
nonnegative tensor factorization
Probabilistic logic
seasonality
Task analysis
tensor decomposition
Tensors
Time series
Time series analysis
title Modeling Hierarchical Seasonality through Low-Rank Tensor Decompositions in Time Series Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Hierarchical%20Seasonality%20through%20Low-Rank%20Tensor%20Decompositions%20in%20Time%20Series%20Analysis&rft.jtitle=IEEE%20access&rft.au=Barsbey,%20Melih&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3298597&rft_dat=%3Cproquest_ieee_%3E2853025860%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2853025860&rft_id=info:pmid/&rft_ieee_id=10193757&rft_doaj_id=oai_doaj_org_article_97dd10a581c84acfba452c7930c06535&rfr_iscdi=true