AmbiSep: Joint Ambisonic-to-Ambisonic Speech Separation and Noise Reduction
Blind separation of the sounds in an Ambisonic sound scene is a challenging problem, especially when the spatial impression of these sounds needs to be preserved. In this work, we consider Ambisonic-to-Ambisonic separation of reverberant speech mixtures, optionally containing noise. A supervised lea...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2023-01, Vol.31, p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 31 |
creator | Herzog, Adrian Chetupalli, Srikanth Raj Habets, Emanuel A. P. |
description | Blind separation of the sounds in an Ambisonic sound scene is a challenging problem, especially when the spatial impression of these sounds needs to be preserved. In this work, we consider Ambisonic-to-Ambisonic separation of reverberant speech mixtures, optionally containing noise. A supervised learning approach is adopted utilizing a transformer-based deep neural network, denoted by AmbiSep. AmbiSep takes mutichannel Ambisonic signals as input and estimates separate multichannel Ambisonic signals for each speaker while preserving their spatial images including reverberation. The GPU memory requirement of AmbiSep during training increases with the number of Ambisonic channels. To overcome this issue, we propose different aggregation methods.The model is trained and evaluated for first-order and second-order Ambisonics using simulated speech mixtures. Experimental results show that the model performs well on clean and noisy reverberant speech mixtures, and also generalizes to mixtures generated with measured Ambisonic impulse responses. |
doi_str_mv | 10.1109/TASLP.2023.3297954 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10192276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10192276</ieee_id><sourcerecordid>2851362241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-f91c63d98f5f476ef54a9f5b64fc9bbfab05804b02947493a2f990fcbce2af243</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gHgIeN6aTLKbjrdStP4pKraeQzZNMMVu1s324Ld311bxNO8N783Aj5BzzsacM7xaTZeLlzEwEGMBqDCXR2QAncxQMHn8qwHZKRmltGGMcaYQlRyQx-m2DEtXX9OHGKqW9jbFKtisjdmfocvaOftOu6BpTBtiRU21pk8xJEdf3Xpn-90ZOfHmI7nRYQ7J2-3NanaXLZ7n97PpIrMgVZt55LYQa5z43EtVOJ9Lgz4vC-ktlqU3JcsnTJYMUCqJwoBHZN6W1oHxIMWQXO7v1k383LnU6k3cNVX3UsMk56IAkLxLwT5lm5hS47yum7A1zZfmTPfc9A833XPTB25d6WJfCs65fwWOAKoQ37URaSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851362241</pqid></control><display><type>article</type><title>AmbiSep: Joint Ambisonic-to-Ambisonic Speech Separation and Noise Reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Herzog, Adrian ; Chetupalli, Srikanth Raj ; Habets, Emanuel A. P.</creator><creatorcontrib>Herzog, Adrian ; Chetupalli, Srikanth Raj ; Habets, Emanuel A. P.</creatorcontrib><description>Blind separation of the sounds in an Ambisonic sound scene is a challenging problem, especially when the spatial impression of these sounds needs to be preserved. In this work, we consider Ambisonic-to-Ambisonic separation of reverberant speech mixtures, optionally containing noise. A supervised learning approach is adopted utilizing a transformer-based deep neural network, denoted by AmbiSep. AmbiSep takes mutichannel Ambisonic signals as input and estimates separate multichannel Ambisonic signals for each speaker while preserving their spatial images including reverberation. The GPU memory requirement of AmbiSep during training increases with the number of Ambisonic channels. To overcome this issue, we propose different aggregation methods.The model is trained and evaluated for first-order and second-order Ambisonics using simulated speech mixtures. Experimental results show that the model performs well on clean and noisy reverberant speech mixtures, and also generalizes to mixtures generated with measured Ambisonic impulse responses.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2023.3297954</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ambisonics ; Artificial neural networks ; Decoding ; Encoding ; Machine learning ; Memory management ; Mixtures ; Noise reduction ; Reverberation ; Separation ; Speech ; Speech processing ; speech separation ; Supervised learning ; Training ; Transformers</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-f91c63d98f5f476ef54a9f5b64fc9bbfab05804b02947493a2f990fcbce2af243</cites><orcidid>0000-0003-0827-8333 ; 0000-0002-2613-8046 ; 0000-0002-2186-5420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10192276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10192276$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herzog, Adrian</creatorcontrib><creatorcontrib>Chetupalli, Srikanth Raj</creatorcontrib><creatorcontrib>Habets, Emanuel A. P.</creatorcontrib><title>AmbiSep: Joint Ambisonic-to-Ambisonic Speech Separation and Noise Reduction</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Blind separation of the sounds in an Ambisonic sound scene is a challenging problem, especially when the spatial impression of these sounds needs to be preserved. In this work, we consider Ambisonic-to-Ambisonic separation of reverberant speech mixtures, optionally containing noise. A supervised learning approach is adopted utilizing a transformer-based deep neural network, denoted by AmbiSep. AmbiSep takes mutichannel Ambisonic signals as input and estimates separate multichannel Ambisonic signals for each speaker while preserving their spatial images including reverberation. The GPU memory requirement of AmbiSep during training increases with the number of Ambisonic channels. To overcome this issue, we propose different aggregation methods.The model is trained and evaluated for first-order and second-order Ambisonics using simulated speech mixtures. Experimental results show that the model performs well on clean and noisy reverberant speech mixtures, and also generalizes to mixtures generated with measured Ambisonic impulse responses.</description><subject>Ambisonics</subject><subject>Artificial neural networks</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Machine learning</subject><subject>Memory management</subject><subject>Mixtures</subject><subject>Noise reduction</subject><subject>Reverberation</subject><subject>Separation</subject><subject>Speech</subject><subject>Speech processing</subject><subject>speech separation</subject><subject>Supervised learning</subject><subject>Training</subject><subject>Transformers</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWGq_gHgIeN6aTLKbjrdStP4pKraeQzZNMMVu1s324Ld311bxNO8N783Aj5BzzsacM7xaTZeLlzEwEGMBqDCXR2QAncxQMHn8qwHZKRmltGGMcaYQlRyQx-m2DEtXX9OHGKqW9jbFKtisjdmfocvaOftOu6BpTBtiRU21pk8xJEdf3Xpn-90ZOfHmI7nRYQ7J2-3NanaXLZ7n97PpIrMgVZt55LYQa5z43EtVOJ9Lgz4vC-ktlqU3JcsnTJYMUCqJwoBHZN6W1oHxIMWQXO7v1k383LnU6k3cNVX3UsMk56IAkLxLwT5lm5hS47yum7A1zZfmTPfc9A833XPTB25d6WJfCs65fwWOAKoQ37URaSs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Herzog, Adrian</creator><creator>Chetupalli, Srikanth Raj</creator><creator>Habets, Emanuel A. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0827-8333</orcidid><orcidid>https://orcid.org/0000-0002-2613-8046</orcidid><orcidid>https://orcid.org/0000-0002-2186-5420</orcidid></search><sort><creationdate>20230101</creationdate><title>AmbiSep: Joint Ambisonic-to-Ambisonic Speech Separation and Noise Reduction</title><author>Herzog, Adrian ; Chetupalli, Srikanth Raj ; Habets, Emanuel A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-f91c63d98f5f476ef54a9f5b64fc9bbfab05804b02947493a2f990fcbce2af243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ambisonics</topic><topic>Artificial neural networks</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Machine learning</topic><topic>Memory management</topic><topic>Mixtures</topic><topic>Noise reduction</topic><topic>Reverberation</topic><topic>Separation</topic><topic>Speech</topic><topic>Speech processing</topic><topic>speech separation</topic><topic>Supervised learning</topic><topic>Training</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herzog, Adrian</creatorcontrib><creatorcontrib>Chetupalli, Srikanth Raj</creatorcontrib><creatorcontrib>Habets, Emanuel A. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herzog, Adrian</au><au>Chetupalli, Srikanth Raj</au><au>Habets, Emanuel A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AmbiSep: Joint Ambisonic-to-Ambisonic Speech Separation and Noise Reduction</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>31</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>Blind separation of the sounds in an Ambisonic sound scene is a challenging problem, especially when the spatial impression of these sounds needs to be preserved. In this work, we consider Ambisonic-to-Ambisonic separation of reverberant speech mixtures, optionally containing noise. A supervised learning approach is adopted utilizing a transformer-based deep neural network, denoted by AmbiSep. AmbiSep takes mutichannel Ambisonic signals as input and estimates separate multichannel Ambisonic signals for each speaker while preserving their spatial images including reverberation. The GPU memory requirement of AmbiSep during training increases with the number of Ambisonic channels. To overcome this issue, we propose different aggregation methods.The model is trained and evaluated for first-order and second-order Ambisonics using simulated speech mixtures. Experimental results show that the model performs well on clean and noisy reverberant speech mixtures, and also generalizes to mixtures generated with measured Ambisonic impulse responses.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2023.3297954</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0827-8333</orcidid><orcidid>https://orcid.org/0000-0002-2613-8046</orcidid><orcidid>https://orcid.org/0000-0002-2186-5420</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2023-01, Vol.31, p.1-13 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_ieee_primary_10192276 |
source | IEEE Electronic Library (IEL) |
subjects | Ambisonics Artificial neural networks Decoding Encoding Machine learning Memory management Mixtures Noise reduction Reverberation Separation Speech Speech processing speech separation Supervised learning Training Transformers |
title | AmbiSep: Joint Ambisonic-to-Ambisonic Speech Separation and Noise Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AmbiSep:%20Joint%20Ambisonic-to-Ambisonic%20Speech%20Separation%20and%20Noise%20Reduction&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Herzog,%20Adrian&rft.date=2023-01-01&rft.volume=31&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2023.3297954&rft_dat=%3Cproquest_RIE%3E2851362241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851362241&rft_id=info:pmid/&rft_ieee_id=10192276&rfr_iscdi=true |