Load-Independent Push-Pull Class \Phi2 Inverter with Single Compact Three-Winding Inductor

This paper proposes a push-pull Class \Phi_2 inverter with a single three-winding integrated inductor. A design methodology is presented to achieve load-independent operation of the proposed Class \Phi_2 inverter, ensuring consistent soft-switching operation and constant voltage gain under varying l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2023-07, p.1-12
Hauptverfasser: Huang, Xiaosheng, Lin, Yongshu, Dou, Yi, Lin, Shuyi, Huang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on power electronics
container_volume
creator Huang, Xiaosheng
Lin, Yongshu
Dou, Yi
Lin, Shuyi
Huang, Jing
description This paper proposes a push-pull Class \Phi_2 inverter with a single three-winding integrated inductor. A design methodology is presented to achieve load-independent operation of the proposed Class \Phi_2 inverter, ensuring consistent soft-switching operation and constant voltage gain under varying load conditions. A compact magnetic structure is proposed to implement the three-winding integrated inductor, which distinctly reduces the number and size of magnetic components compared with conventional Class \Phi_2 inverters. By flux cancellation and core sharing, the magnetic integration not only reduces the inductor's overall volume and losses but also maintains the inverter's high efficiency. A 6.78-MHz LCC-S resonant WPT prototype is built to validate the proposed methodology and the magnetic structure. Furthermore, an active push-pull Class \Phi_2 rectifier is implemented and demonstrates the load-independent resistive input. The experimental results indicate that the prototype performs robust soft switching over the entire load range, from no load to 320 watts output. The voltage gain remains nearly constant, varying within +1/-3.5% Moreover, the measured DC-DC peak efficiency of the system reaches 91% at 170 watts output, while the estimated peak efficiency of the Class \Phi_2 inverter attains 96.6%. The proposed magnetic structure offers compact dimensions and low loss characteristics for the megahertz inverter.
doi_str_mv 10.1109/TPEL.2023.3298254
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10192082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10192082</ieee_id><sourcerecordid>10192082</sourcerecordid><originalsourceid>FETCH-ieee_primary_101920823</originalsourceid><addsrcrecordid>eNqFisGKwjAURbNQ0FE_QHCRH0jnJbWQrIui4KIwBUGEEuzTRmJaktTBv7cL927ugXMuIUsOCeegfstic0gEiDRJhZIiW4_IFKTMmFQqnZCfEO4AfJ0Bn5LTodU127saOxzGRVr0oWFFby3NrQ6BnovGCLp3T_QRPf03saF_xt0s0rx9dPoSadl4RHY0rh78cK37S2z9nIyv2gZcfDgjq-2mzHfMIGLVefPQ_lVx4EqAFOmX_AYMcEEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Load-Independent Push-Pull Class \Phi2 Inverter with Single Compact Three-Winding Inductor</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Xiaosheng ; Lin, Yongshu ; Dou, Yi ; Lin, Shuyi ; Huang, Jing</creator><creatorcontrib>Huang, Xiaosheng ; Lin, Yongshu ; Dou, Yi ; Lin, Shuyi ; Huang, Jing</creatorcontrib><description>This paper proposes a push-pull Class \Phi_2 inverter with a single three-winding integrated inductor. A design methodology is presented to achieve load-independent operation of the proposed Class \Phi_2 inverter, ensuring consistent soft-switching operation and constant voltage gain under varying load conditions. A compact magnetic structure is proposed to implement the three-winding integrated inductor, which distinctly reduces the number and size of magnetic components compared with conventional Class \Phi_2 inverters. By flux cancellation and core sharing, the magnetic integration not only reduces the inductor's overall volume and losses but also maintains the inverter's high efficiency. A 6.78-MHz LCC-S resonant WPT prototype is built to validate the proposed methodology and the magnetic structure. Furthermore, an active push-pull Class \Phi_2 rectifier is implemented and demonstrates the load-independent resistive input. The experimental results indicate that the prototype performs robust soft switching over the entire load range, from no load to 320 watts output. The voltage gain remains nearly constant, varying within +1/-3.5% Moreover, the measured DC-DC peak efficiency of the system reaches 91% at 170 watts output, while the estimated peak efficiency of the Class \Phi_2 inverter attains 96.6%. The proposed magnetic structure offers compact dimensions and low loss characteristics for the megahertz inverter.</description><identifier>ISSN: 0885-8993</identifier><identifier>DOI: 10.1109/TPEL.2023.3298254</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>active rectifier ; Class EF ; Class Phi_2 ; Harmonic analysis ; Inductance ; Inductors ; inverter ; Inverters ; load-independent ; magnetic integration ; Magnetic resonance ; Switches ; Voltage ; wireless power transfer</subject><ispartof>IEEE transactions on power electronics, 2023-07, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3725-4357 ; 0000-0001-8821-0616 ; 0000-0003-1160-585X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10192082$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10192082$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Xiaosheng</creatorcontrib><creatorcontrib>Lin, Yongshu</creatorcontrib><creatorcontrib>Dou, Yi</creatorcontrib><creatorcontrib>Lin, Shuyi</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><title>Load-Independent Push-Pull Class \Phi2 Inverter with Single Compact Three-Winding Inductor</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper proposes a push-pull Class \Phi_2 inverter with a single three-winding integrated inductor. A design methodology is presented to achieve load-independent operation of the proposed Class \Phi_2 inverter, ensuring consistent soft-switching operation and constant voltage gain under varying load conditions. A compact magnetic structure is proposed to implement the three-winding integrated inductor, which distinctly reduces the number and size of magnetic components compared with conventional Class \Phi_2 inverters. By flux cancellation and core sharing, the magnetic integration not only reduces the inductor's overall volume and losses but also maintains the inverter's high efficiency. A 6.78-MHz LCC-S resonant WPT prototype is built to validate the proposed methodology and the magnetic structure. Furthermore, an active push-pull Class \Phi_2 rectifier is implemented and demonstrates the load-independent resistive input. The experimental results indicate that the prototype performs robust soft switching over the entire load range, from no load to 320 watts output. The voltage gain remains nearly constant, varying within +1/-3.5% Moreover, the measured DC-DC peak efficiency of the system reaches 91% at 170 watts output, while the estimated peak efficiency of the Class \Phi_2 inverter attains 96.6%. The proposed magnetic structure offers compact dimensions and low loss characteristics for the megahertz inverter.</description><subject>active rectifier</subject><subject>Class EF</subject><subject>Class Phi_2</subject><subject>Harmonic analysis</subject><subject>Inductance</subject><subject>Inductors</subject><subject>inverter</subject><subject>Inverters</subject><subject>load-independent</subject><subject>magnetic integration</subject><subject>Magnetic resonance</subject><subject>Switches</subject><subject>Voltage</subject><subject>wireless power transfer</subject><issn>0885-8993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFisGKwjAURbNQ0FE_QHCRH0jnJbWQrIui4KIwBUGEEuzTRmJaktTBv7cL927ugXMuIUsOCeegfstic0gEiDRJhZIiW4_IFKTMmFQqnZCfEO4AfJ0Bn5LTodU127saOxzGRVr0oWFFby3NrQ6BnovGCLp3T_QRPf03saF_xt0s0rx9dPoSadl4RHY0rh78cK37S2z9nIyv2gZcfDgjq-2mzHfMIGLVefPQ_lVx4EqAFOmX_AYMcEEw</recordid><startdate>20230721</startdate><enddate>20230721</enddate><creator>Huang, Xiaosheng</creator><creator>Lin, Yongshu</creator><creator>Dou, Yi</creator><creator>Lin, Shuyi</creator><creator>Huang, Jing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-3725-4357</orcidid><orcidid>https://orcid.org/0000-0001-8821-0616</orcidid><orcidid>https://orcid.org/0000-0003-1160-585X</orcidid></search><sort><creationdate>20230721</creationdate><title>Load-Independent Push-Pull Class \Phi2 Inverter with Single Compact Three-Winding Inductor</title><author>Huang, Xiaosheng ; Lin, Yongshu ; Dou, Yi ; Lin, Shuyi ; Huang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101920823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>active rectifier</topic><topic>Class EF</topic><topic>Class Phi_2</topic><topic>Harmonic analysis</topic><topic>Inductance</topic><topic>Inductors</topic><topic>inverter</topic><topic>Inverters</topic><topic>load-independent</topic><topic>magnetic integration</topic><topic>Magnetic resonance</topic><topic>Switches</topic><topic>Voltage</topic><topic>wireless power transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaosheng</creatorcontrib><creatorcontrib>Lin, Yongshu</creatorcontrib><creatorcontrib>Dou, Yi</creatorcontrib><creatorcontrib>Lin, Shuyi</creatorcontrib><creatorcontrib>Huang, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Xiaosheng</au><au>Lin, Yongshu</au><au>Dou, Yi</au><au>Lin, Shuyi</au><au>Huang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Load-Independent Push-Pull Class \Phi2 Inverter with Single Compact Three-Winding Inductor</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-07-21</date><risdate>2023</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0885-8993</issn><coden>ITPEE8</coden><abstract>This paper proposes a push-pull Class \Phi_2 inverter with a single three-winding integrated inductor. A design methodology is presented to achieve load-independent operation of the proposed Class \Phi_2 inverter, ensuring consistent soft-switching operation and constant voltage gain under varying load conditions. A compact magnetic structure is proposed to implement the three-winding integrated inductor, which distinctly reduces the number and size of magnetic components compared with conventional Class \Phi_2 inverters. By flux cancellation and core sharing, the magnetic integration not only reduces the inductor's overall volume and losses but also maintains the inverter's high efficiency. A 6.78-MHz LCC-S resonant WPT prototype is built to validate the proposed methodology and the magnetic structure. Furthermore, an active push-pull Class \Phi_2 rectifier is implemented and demonstrates the load-independent resistive input. The experimental results indicate that the prototype performs robust soft switching over the entire load range, from no load to 320 watts output. The voltage gain remains nearly constant, varying within +1/-3.5% Moreover, the measured DC-DC peak efficiency of the system reaches 91% at 170 watts output, while the estimated peak efficiency of the Class \Phi_2 inverter attains 96.6%. The proposed magnetic structure offers compact dimensions and low loss characteristics for the megahertz inverter.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2023.3298254</doi><orcidid>https://orcid.org/0000-0003-3725-4357</orcidid><orcidid>https://orcid.org/0000-0001-8821-0616</orcidid><orcidid>https://orcid.org/0000-0003-1160-585X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2023-07, p.1-12
issn 0885-8993
language eng
recordid cdi_ieee_primary_10192082
source IEEE Electronic Library (IEL)
subjects active rectifier
Class EF
Class Phi_2
Harmonic analysis
Inductance
Inductors
inverter
Inverters
load-independent
magnetic integration
Magnetic resonance
Switches
Voltage
wireless power transfer
title Load-Independent Push-Pull Class \Phi2 Inverter with Single Compact Three-Winding Inductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Load-Independent%20Push-Pull%20Class%20%5CPhi2%20Inverter%20with%20Single%20Compact%20Three-Winding%20Inductor&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Huang,%20Xiaosheng&rft.date=2023-07-21&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0885-8993&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3298254&rft_dat=%3Cieee_RIE%3E10192082%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10192082&rfr_iscdi=true