New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems
The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-01, Vol.71 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 71 |
creator | Chen, Liping Xue, Min Lopes, Antonio M. Wu, Ranchao Zhang, Xiaohua Chen, YangQuan |
description | The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems. |
doi_str_mv | 10.1109/TCSII.2023.3297174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10188856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188856</ieee_id><sourcerecordid>2912954115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFb_gLgIuE6dz8zMUoLVQLFC63qYTF5oSpOpMylSf72J7cLVu4t7Lo-D0D3BM0Kwflrnq6KYUUzZjFEtieQXaEKEUCmTmlyOmetUSi6v0U2MW4ypxoxO0Mc7fCerY-c2wXfNj-0b3yV5aHoIY_J1UnTOty108RBsD8k8WDeW7C5dhgpCkm-s7xs3jMQe2niLrmq7i3B3vlP0OX9Z52_pYvla5M-L1FGd9WlWa8iG5CSHUiqoSipKDZWCmlqsMi6lLImuFQjOnCWVw8AVrwTHTJJasyl6PO3ug_86QOzN1h_C8FY0VBOqBSdEDC16arngYwxQm31oWhuOhmAzmjN_5sxozpzNDdDDCWoA4B9AlFIiY79b92si</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912954115</pqid></control><display><type>article</type><title>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Liping ; Xue, Min ; Lopes, Antonio M. ; Wu, Ranchao ; Zhang, Xiaohua ; Chen, YangQuan</creator><creatorcontrib>Chen, Liping ; Xue, Min ; Lopes, Antonio M. ; Wu, Ranchao ; Zhang, Xiaohua ; Chen, YangQuan</creatorcontrib><description>The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3297174</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Automation ; chaos ; Chaotic communication ; Control methods ; Feedback control ; Fractional-order systems ; incommensurate system ; Stability analysis ; Synchronism ; Synchronization ; System effectiveness ; Trajectory</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-01, Vol.71 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</citedby><cites>FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</cites><orcidid>0000-0002-7780-0861 ; 0000-0002-8110-5378 ; 0000-0002-7422-5988 ; 0000-0001-7359-4370 ; 0000-0002-6413-4097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10188856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xue, Min</creatorcontrib><creatorcontrib>Lopes, Antonio M.</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Chen, YangQuan</creatorcontrib><title>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems.</description><subject>Adaptive control</subject><subject>Automation</subject><subject>chaos</subject><subject>Chaotic communication</subject><subject>Control methods</subject><subject>Feedback control</subject><subject>Fractional-order systems</subject><subject>incommensurate system</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>System effectiveness</subject><subject>Trajectory</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFb_gLgIuE6dz8zMUoLVQLFC63qYTF5oSpOpMylSf72J7cLVu4t7Lo-D0D3BM0Kwflrnq6KYUUzZjFEtieQXaEKEUCmTmlyOmetUSi6v0U2MW4ypxoxO0Mc7fCerY-c2wXfNj-0b3yV5aHoIY_J1UnTOty108RBsD8k8WDeW7C5dhgpCkm-s7xs3jMQe2niLrmq7i3B3vlP0OX9Z52_pYvla5M-L1FGd9WlWa8iG5CSHUiqoSipKDZWCmlqsMi6lLImuFQjOnCWVw8AVrwTHTJJasyl6PO3ug_86QOzN1h_C8FY0VBOqBSdEDC16arngYwxQm31oWhuOhmAzmjN_5sxozpzNDdDDCWoA4B9AlFIiY79b92si</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Chen, Liping</creator><creator>Xue, Min</creator><creator>Lopes, Antonio M.</creator><creator>Wu, Ranchao</creator><creator>Zhang, Xiaohua</creator><creator>Chen, YangQuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7780-0861</orcidid><orcidid>https://orcid.org/0000-0002-8110-5378</orcidid><orcidid>https://orcid.org/0000-0002-7422-5988</orcidid><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid><orcidid>https://orcid.org/0000-0002-6413-4097</orcidid></search><sort><creationdate>20240101</creationdate><title>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</title><author>Chen, Liping ; Xue, Min ; Lopes, Antonio M. ; Wu, Ranchao ; Zhang, Xiaohua ; Chen, YangQuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Automation</topic><topic>chaos</topic><topic>Chaotic communication</topic><topic>Control methods</topic><topic>Feedback control</topic><topic>Fractional-order systems</topic><topic>incommensurate system</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>System effectiveness</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xue, Min</creatorcontrib><creatorcontrib>Lopes, Antonio M.</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Chen, YangQuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Liping</au><au>Xue, Min</au><au>Lopes, Antonio M.</au><au>Wu, Ranchao</au><au>Zhang, Xiaohua</au><au>Chen, YangQuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>71</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3297174</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7780-0861</orcidid><orcidid>https://orcid.org/0000-0002-8110-5378</orcidid><orcidid>https://orcid.org/0000-0002-7422-5988</orcidid><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid><orcidid>https://orcid.org/0000-0002-6413-4097</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2024-01, Vol.71 (1), p.1-1 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_ieee_primary_10188856 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Automation chaos Chaotic communication Control methods Feedback control Fractional-order systems incommensurate system Stability analysis Synchronism Synchronization System effectiveness Trajectory |
title | New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Synchronization%20Criterion%20of%20Incommensurate%20Fractional-Order%20Chaotic%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chen,%20Liping&rft.date=2024-01-01&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3297174&rft_dat=%3Cproquest_RIE%3E2912954115%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912954115&rft_id=info:pmid/&rft_ieee_id=10188856&rfr_iscdi=true |