New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems

The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-01, Vol.71 (1), p.1-1
Hauptverfasser: Chen, Liping, Xue, Min, Lopes, Antonio M., Wu, Ranchao, Zhang, Xiaohua, Chen, YangQuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 71
creator Chen, Liping
Xue, Min
Lopes, Antonio M.
Wu, Ranchao
Zhang, Xiaohua
Chen, YangQuan
description The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems.
doi_str_mv 10.1109/TCSII.2023.3297174
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10188856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188856</ieee_id><sourcerecordid>2912954115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFb_gLgIuE6dz8zMUoLVQLFC63qYTF5oSpOpMylSf72J7cLVu4t7Lo-D0D3BM0Kwflrnq6KYUUzZjFEtieQXaEKEUCmTmlyOmetUSi6v0U2MW4ypxoxO0Mc7fCerY-c2wXfNj-0b3yV5aHoIY_J1UnTOty108RBsD8k8WDeW7C5dhgpCkm-s7xs3jMQe2niLrmq7i3B3vlP0OX9Z52_pYvla5M-L1FGd9WlWa8iG5CSHUiqoSipKDZWCmlqsMi6lLImuFQjOnCWVw8AVrwTHTJJasyl6PO3ug_86QOzN1h_C8FY0VBOqBSdEDC16arngYwxQm31oWhuOhmAzmjN_5sxozpzNDdDDCWoA4B9AlFIiY79b92si</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912954115</pqid></control><display><type>article</type><title>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Liping ; Xue, Min ; Lopes, Antonio M. ; Wu, Ranchao ; Zhang, Xiaohua ; Chen, YangQuan</creator><creatorcontrib>Chen, Liping ; Xue, Min ; Lopes, Antonio M. ; Wu, Ranchao ; Zhang, Xiaohua ; Chen, YangQuan</creatorcontrib><description>The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3297174</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Automation ; chaos ; Chaotic communication ; Control methods ; Feedback control ; Fractional-order systems ; incommensurate system ; Stability analysis ; Synchronism ; Synchronization ; System effectiveness ; Trajectory</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-01, Vol.71 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</citedby><cites>FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</cites><orcidid>0000-0002-7780-0861 ; 0000-0002-8110-5378 ; 0000-0002-7422-5988 ; 0000-0001-7359-4370 ; 0000-0002-6413-4097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10188856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xue, Min</creatorcontrib><creatorcontrib>Lopes, Antonio M.</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Chen, YangQuan</creatorcontrib><title>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems.</description><subject>Adaptive control</subject><subject>Automation</subject><subject>chaos</subject><subject>Chaotic communication</subject><subject>Control methods</subject><subject>Feedback control</subject><subject>Fractional-order systems</subject><subject>incommensurate system</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>System effectiveness</subject><subject>Trajectory</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFb_gLgIuE6dz8zMUoLVQLFC63qYTF5oSpOpMylSf72J7cLVu4t7Lo-D0D3BM0Kwflrnq6KYUUzZjFEtieQXaEKEUCmTmlyOmetUSi6v0U2MW4ypxoxO0Mc7fCerY-c2wXfNj-0b3yV5aHoIY_J1UnTOty108RBsD8k8WDeW7C5dhgpCkm-s7xs3jMQe2niLrmq7i3B3vlP0OX9Z52_pYvla5M-L1FGd9WlWa8iG5CSHUiqoSipKDZWCmlqsMi6lLImuFQjOnCWVw8AVrwTHTJJasyl6PO3ug_86QOzN1h_C8FY0VBOqBSdEDC16arngYwxQm31oWhuOhmAzmjN_5sxozpzNDdDDCWoA4B9AlFIiY79b92si</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Chen, Liping</creator><creator>Xue, Min</creator><creator>Lopes, Antonio M.</creator><creator>Wu, Ranchao</creator><creator>Zhang, Xiaohua</creator><creator>Chen, YangQuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7780-0861</orcidid><orcidid>https://orcid.org/0000-0002-8110-5378</orcidid><orcidid>https://orcid.org/0000-0002-7422-5988</orcidid><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid><orcidid>https://orcid.org/0000-0002-6413-4097</orcidid></search><sort><creationdate>20240101</creationdate><title>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</title><author>Chen, Liping ; Xue, Min ; Lopes, Antonio M. ; Wu, Ranchao ; Zhang, Xiaohua ; Chen, YangQuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-6f9e6296c74eb78edb25b9ed8ef2a0864777b19f8e543ca1dc0e484d540371f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Automation</topic><topic>chaos</topic><topic>Chaotic communication</topic><topic>Control methods</topic><topic>Feedback control</topic><topic>Fractional-order systems</topic><topic>incommensurate system</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>System effectiveness</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xue, Min</creatorcontrib><creatorcontrib>Lopes, Antonio M.</creatorcontrib><creatorcontrib>Wu, Ranchao</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Chen, YangQuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Liping</au><au>Xue, Min</au><au>Lopes, Antonio M.</au><au>Wu, Ranchao</au><au>Zhang, Xiaohua</au><au>Chen, YangQuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>71</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>The synchronization of fractional-order (FO) chaotic systems has received much attention in recent years. However, most research was focused on FO commensurate systems. In this brief, the synchronization of incommensurate fractional-order (IFO) chaotic systems is addressed. By employing the linear feedback control method, a new sufficient condition is proposed to ensure the synchronization of IFO chaotic systems. Compared with other approaches reported in the literature, the new method depends just on the system's parameters, is easier to implement in engineering practice, applies to systems with FO in the interval (0,2), and is still valid for synchronizing IFO chaotic systems of irrational order. The effectiveness of the theoretical findings is illustrated by numerical simulations using two IFO chaotic systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3297174</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7780-0861</orcidid><orcidid>https://orcid.org/0000-0002-8110-5378</orcidid><orcidid>https://orcid.org/0000-0002-7422-5988</orcidid><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid><orcidid>https://orcid.org/0000-0002-6413-4097</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2024-01, Vol.71 (1), p.1-1
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_10188856
source IEEE Electronic Library (IEL)
subjects Adaptive control
Automation
chaos
Chaotic communication
Control methods
Feedback control
Fractional-order systems
incommensurate system
Stability analysis
Synchronism
Synchronization
System effectiveness
Trajectory
title New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Synchronization%20Criterion%20of%20Incommensurate%20Fractional-Order%20Chaotic%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chen,%20Liping&rft.date=2024-01-01&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3297174&rft_dat=%3Cproquest_RIE%3E2912954115%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912954115&rft_id=info:pmid/&rft_ieee_id=10188856&rfr_iscdi=true