MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images

Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Rong, Xuee, Wang, Peijin, Diao, Wenhui, Yang, Yiran, Yin, Wenxin, Zeng, Xuan, Wang, Hongqi, Sun, Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Rong, Xuee
Wang, Peijin
Diao, Wenhui
Yang, Yiran
Yin, Wenxin
Zeng, Xuan
Wang, Hongqi
Sun, Xian
description Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro.
doi_str_mv 10.1109/TGRS.2023.3297203
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10188852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188852</ieee_id><sourcerecordid>2847954008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</originalsourceid><addsrcrecordid>eNpNkM1LwzAchoMoOKd_gOAh4LkzH03TeJOqc7AhbPNcsvSXmdGmtekOnv3HbbeBnvLB-7wvPAjdUjKhlKiH9XS5mjDC-IQzJRnhZ2hEhUgjksTxORoRqpKIpYpdoqsQdoTQWFA5Qj8Ll7X1I17UBZTOb3H_CiGaVXoLeAWV9p0zeAml7lztw6dr8DM04AvwxkHAtm5xVuoB8aaFCnynyz9wBdvD1wBj5_uiqu6GYh-GscNMuEYXVpcBbk7nGH28vqyzt2j-Pp1lT_PIMBV3UWqMZVZqDoqTAjSTNCG6YEkhuCkIlYxBf9Ox2FAreWGsoLbgGyKUllYmfIzuj71NW3_tIXT5rt63vp_MWRpLJWJC0j5FjykzmGjB5k3rKt1-55Tkg-t8cJ0PrvOT6565OzIOAP7laZqmgvFfltB87g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847954008</pqid></control><display><type>article</type><title>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Rong, Xuee ; Wang, Peijin ; Diao, Wenhui ; Yang, Yiran ; Yin, Wenxin ; Zeng, Xuan ; Wang, Hongqi ; Sun, Xian</creator><creatorcontrib>Rong, Xuee ; Wang, Peijin ; Diao, Wenhui ; Yang, Yiran ; Yin, Wenxin ; Zeng, Xuan ; Wang, Hongqi ; Sun, Xian</creatorcontrib><description>Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3297203</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>catastrophic forgetting ; class-incremental learning ; Cohesion ; Data models ; Distillation ; Entropy ; Image processing ; Image segmentation ; Knowledge engineering ; Learning ; Modelling ; Pixels ; Remote sensing ; Semantic segmentation ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</citedby><cites>FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</cites><orcidid>0000-0003-2688-6340 ; 0000-0002-3931-3974 ; 0000-0002-0038-9816 ; 0000-0001-5047-3488 ; 0000-0002-7681-7020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10188852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rong, Xuee</creatorcontrib><creatorcontrib>Wang, Peijin</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Yang, Yiran</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Wang, Hongqi</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><title>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro.</description><subject>catastrophic forgetting</subject><subject>class-incremental learning</subject><subject>Cohesion</subject><subject>Data models</subject><subject>Distillation</subject><subject>Entropy</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Knowledge engineering</subject><subject>Learning</subject><subject>Modelling</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LwzAchoMoOKd_gOAh4LkzH03TeJOqc7AhbPNcsvSXmdGmtekOnv3HbbeBnvLB-7wvPAjdUjKhlKiH9XS5mjDC-IQzJRnhZ2hEhUgjksTxORoRqpKIpYpdoqsQdoTQWFA5Qj8Ll7X1I17UBZTOb3H_CiGaVXoLeAWV9p0zeAml7lztw6dr8DM04AvwxkHAtm5xVuoB8aaFCnynyz9wBdvD1wBj5_uiqu6GYh-GscNMuEYXVpcBbk7nGH28vqyzt2j-Pp1lT_PIMBV3UWqMZVZqDoqTAjSTNCG6YEkhuCkIlYxBf9Ox2FAreWGsoLbgGyKUllYmfIzuj71NW3_tIXT5rt63vp_MWRpLJWJC0j5FjykzmGjB5k3rKt1-55Tkg-t8cJ0PrvOT6565OzIOAP7laZqmgvFfltB87g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rong, Xuee</creator><creator>Wang, Peijin</creator><creator>Diao, Wenhui</creator><creator>Yang, Yiran</creator><creator>Yin, Wenxin</creator><creator>Zeng, Xuan</creator><creator>Wang, Hongqi</creator><creator>Sun, Xian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2688-6340</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0001-5047-3488</orcidid><orcidid>https://orcid.org/0000-0002-7681-7020</orcidid></search><sort><creationdate>20230101</creationdate><title>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</title><author>Rong, Xuee ; Wang, Peijin ; Diao, Wenhui ; Yang, Yiran ; Yin, Wenxin ; Zeng, Xuan ; Wang, Hongqi ; Sun, Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>catastrophic forgetting</topic><topic>class-incremental learning</topic><topic>Cohesion</topic><topic>Data models</topic><topic>Distillation</topic><topic>Entropy</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Knowledge engineering</topic><topic>Learning</topic><topic>Modelling</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Xuee</creatorcontrib><creatorcontrib>Wang, Peijin</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Yang, Yiran</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Wang, Hongqi</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rong, Xuee</au><au>Wang, Peijin</au><au>Diao, Wenhui</au><au>Yang, Yiran</au><au>Yin, Wenxin</au><au>Zeng, Xuan</au><au>Wang, Hongqi</au><au>Sun, Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3297203</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2688-6340</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0001-5047-3488</orcidid><orcidid>https://orcid.org/0000-0002-7681-7020</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10188852
source IEEE Electronic Library (IEL)
subjects catastrophic forgetting
class-incremental learning
Cohesion
Data models
Distillation
Entropy
Image processing
Image segmentation
Knowledge engineering
Learning
Modelling
Pixels
Remote sensing
Semantic segmentation
Semantics
Task analysis
Training
title MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MiCro:%20Modeling%20Cross-Image%20Semantic%20Relationship%20Dependencies%20for%20Class-Incremental%20Semantic%20Segmentation%20in%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Rong,%20Xuee&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3297203&rft_dat=%3Cproquest_RIE%3E2847954008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847954008&rft_id=info:pmid/&rft_ieee_id=10188852&rfr_iscdi=true