MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images
Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Rong, Xuee Wang, Peijin Diao, Wenhui Yang, Yiran Yin, Wenxin Zeng, Xuan Wang, Hongqi Sun, Xian |
description | Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro. |
doi_str_mv | 10.1109/TGRS.2023.3297203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10188852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188852</ieee_id><sourcerecordid>2847954008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</originalsourceid><addsrcrecordid>eNpNkM1LwzAchoMoOKd_gOAh4LkzH03TeJOqc7AhbPNcsvSXmdGmtekOnv3HbbeBnvLB-7wvPAjdUjKhlKiH9XS5mjDC-IQzJRnhZ2hEhUgjksTxORoRqpKIpYpdoqsQdoTQWFA5Qj8Ll7X1I17UBZTOb3H_CiGaVXoLeAWV9p0zeAml7lztw6dr8DM04AvwxkHAtm5xVuoB8aaFCnynyz9wBdvD1wBj5_uiqu6GYh-GscNMuEYXVpcBbk7nGH28vqyzt2j-Pp1lT_PIMBV3UWqMZVZqDoqTAjSTNCG6YEkhuCkIlYxBf9Ox2FAreWGsoLbgGyKUllYmfIzuj71NW3_tIXT5rt63vp_MWRpLJWJC0j5FjykzmGjB5k3rKt1-55Tkg-t8cJ0PrvOT6565OzIOAP7laZqmgvFfltB87g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847954008</pqid></control><display><type>article</type><title>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Rong, Xuee ; Wang, Peijin ; Diao, Wenhui ; Yang, Yiran ; Yin, Wenxin ; Zeng, Xuan ; Wang, Hongqi ; Sun, Xian</creator><creatorcontrib>Rong, Xuee ; Wang, Peijin ; Diao, Wenhui ; Yang, Yiran ; Yin, Wenxin ; Zeng, Xuan ; Wang, Hongqi ; Sun, Xian</creatorcontrib><description>Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3297203</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>catastrophic forgetting ; class-incremental learning ; Cohesion ; Data models ; Distillation ; Entropy ; Image processing ; Image segmentation ; Knowledge engineering ; Learning ; Modelling ; Pixels ; Remote sensing ; Semantic segmentation ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</citedby><cites>FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</cites><orcidid>0000-0003-2688-6340 ; 0000-0002-3931-3974 ; 0000-0002-0038-9816 ; 0000-0001-5047-3488 ; 0000-0002-7681-7020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10188852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rong, Xuee</creatorcontrib><creatorcontrib>Wang, Peijin</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Yang, Yiran</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Wang, Hongqi</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><title>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro.</description><subject>catastrophic forgetting</subject><subject>class-incremental learning</subject><subject>Cohesion</subject><subject>Data models</subject><subject>Distillation</subject><subject>Entropy</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Knowledge engineering</subject><subject>Learning</subject><subject>Modelling</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LwzAchoMoOKd_gOAh4LkzH03TeJOqc7AhbPNcsvSXmdGmtekOnv3HbbeBnvLB-7wvPAjdUjKhlKiH9XS5mjDC-IQzJRnhZ2hEhUgjksTxORoRqpKIpYpdoqsQdoTQWFA5Qj8Ll7X1I17UBZTOb3H_CiGaVXoLeAWV9p0zeAml7lztw6dr8DM04AvwxkHAtm5xVuoB8aaFCnynyz9wBdvD1wBj5_uiqu6GYh-GscNMuEYXVpcBbk7nGH28vqyzt2j-Pp1lT_PIMBV3UWqMZVZqDoqTAjSTNCG6YEkhuCkIlYxBf9Ox2FAreWGsoLbgGyKUllYmfIzuj71NW3_tIXT5rt63vp_MWRpLJWJC0j5FjykzmGjB5k3rKt1-55Tkg-t8cJ0PrvOT6565OzIOAP7laZqmgvFfltB87g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rong, Xuee</creator><creator>Wang, Peijin</creator><creator>Diao, Wenhui</creator><creator>Yang, Yiran</creator><creator>Yin, Wenxin</creator><creator>Zeng, Xuan</creator><creator>Wang, Hongqi</creator><creator>Sun, Xian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2688-6340</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0001-5047-3488</orcidid><orcidid>https://orcid.org/0000-0002-7681-7020</orcidid></search><sort><creationdate>20230101</creationdate><title>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</title><author>Rong, Xuee ; Wang, Peijin ; Diao, Wenhui ; Yang, Yiran ; Yin, Wenxin ; Zeng, Xuan ; Wang, Hongqi ; Sun, Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-8ccf2f7a3e930dea27160ad26d53cd01722e53ca45b1f73dcf51fd3b059a7f763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>catastrophic forgetting</topic><topic>class-incremental learning</topic><topic>Cohesion</topic><topic>Data models</topic><topic>Distillation</topic><topic>Entropy</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Knowledge engineering</topic><topic>Learning</topic><topic>Modelling</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Xuee</creatorcontrib><creatorcontrib>Wang, Peijin</creatorcontrib><creatorcontrib>Diao, Wenhui</creatorcontrib><creatorcontrib>Yang, Yiran</creatorcontrib><creatorcontrib>Yin, Wenxin</creatorcontrib><creatorcontrib>Zeng, Xuan</creatorcontrib><creatorcontrib>Wang, Hongqi</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rong, Xuee</au><au>Wang, Peijin</au><au>Diao, Wenhui</au><au>Yang, Yiran</au><au>Yin, Wenxin</au><au>Zeng, Xuan</au><au>Wang, Hongqi</au><au>Sun, Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Continual learning is an effective way to overcome catastrophic forgetting (CF) in incremental learning for semantic segmentation. The existing continual semantic segmentation (CSS) methods of remote sensing (RS) ignore the semantic relationships among pixels across different images, which will lead to disappointing segmentation results, such as edge pixel misclassification and small object omission. In this paper, we propose a framework for modeling cross-image semantic relationship dependencies (MiCro), which aims to learn an inter-class separable and intra-class cohesive feature space from the pixel relationships across various images to ensure that learned categories can prevent CF in the incremental process. Specifically, we exploit the relationships among pixels of images in mini-batch to construct three losses: (a) Cross-image feature relationship distillation (CFRD) loss, which builds a well-structured feature space; (b) Cross-image intra-class feature cohesion (CIFC) loss, which is devised to make intra-class features more cohesive; and (c) Cross-image class-area weighted cross-entropy (CCWCE) loss, which is mainly employed to inversely weight the proportion of category area in mini-batch. The effectiveness of the proposed approach is demonstrated by extensive experiments on three RS semantic segmentation datasets from ISPRS Vaihingen, ISPRS Potsdam, and iSAID. MiCro is superior to the current most advanced methods in most incremental settings, especially improving mIoU by 11.59% on ISPRS Vaihingen, 13.17% on ISPRS Potsdam, and 15.01% on iSAID in the most difficult incremental settings, which promotes the CSS to a state-of-the-art (SOTA) level. The code will be available at https://github.com/RongXueE/MiCro.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3297203</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2688-6340</orcidid><orcidid>https://orcid.org/0000-0002-3931-3974</orcidid><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0001-5047-3488</orcidid><orcidid>https://orcid.org/0000-0002-7681-7020</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10188852 |
source | IEEE Electronic Library (IEL) |
subjects | catastrophic forgetting class-incremental learning Cohesion Data models Distillation Entropy Image processing Image segmentation Knowledge engineering Learning Modelling Pixels Remote sensing Semantic segmentation Semantics Task analysis Training |
title | MiCro: Modeling Cross-Image Semantic Relationship Dependencies for Class-Incremental Semantic Segmentation in Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MiCro:%20Modeling%20Cross-Image%20Semantic%20Relationship%20Dependencies%20for%20Class-Incremental%20Semantic%20Segmentation%20in%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Rong,%20Xuee&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3297203&rft_dat=%3Cproquest_RIE%3E2847954008%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847954008&rft_id=info:pmid/&rft_ieee_id=10188852&rfr_iscdi=true |