Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data
We introduce an unsupervised learning method that aims to identify building anomalies using Interferometric Synthetic Aperture Radar (InSAR) time-series data. Specifically, we leverage data obtained from the European Ground Motion Service to develop our proposed approach, which employs a long short-...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2023, Vol.16, p.6931-6947 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6947 |
---|---|
container_issue | |
container_start_page | 6931 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 16 |
creator | Kuzu, Rdvan Salih Bagaglini, Leonardo Wang, Yi Dumitru, Corneliu Octavian Braham, Nassim Ait Ali Pasquali, Giorgio Santarelli, Filippo Trillo, Francesco Saha, Sudipan Zhu, Xiao Xiang |
description | We introduce an unsupervised learning method that aims to identify building anomalies using Interferometric Synthetic Aperture Radar (InSAR) time-series data. Specifically, we leverage data obtained from the European Ground Motion Service to develop our proposed approach, which employs a long short-term memory autoencoder model and a reconstruction loss function based on a soft variant of the dynamic time warping, namely "soft-DTW". We deliberately utilize this loss function for its ability to compare time-series that are not aligned in time, unlike the other conventional reconstruction losses that do not account for time shifts. Moreover, we enhance the performance of anomaly detection by smoothing inputs with a Hann window and defining the learning objective to reconstruct the time order of randomly permuted input series. Our experimental findings, based on persistent scatterer data from Rome, Italy, reveal that our method outperforms several unsupervised machine learning and deep learning methods in detecting various types of building displacement, such as trend, noise, and step anomalies. Additionally, quantitative and qualitative evaluations validate the efficacy of our approach in identifying potentially anomalous buildings. Thus, our method offers a promising solution for detecting anomalies in PS-InSAR time-series, which could have substantial implications in the fields of urban monitoring and infrastructure management. |
doi_str_mv | 10.1109/JSTARS.2023.3297267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10188664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188664</ieee_id><doaj_id>oai_doaj_org_article_19cb2deceb2d485ea6ccebdf668f8d2d</doaj_id><sourcerecordid>2845755148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c4e794c9dd49a1d8228e012fa56511de7f24a814ffd42fce7c415a1c52f2ae483</originalsourceid><addsrcrecordid>eNpNUUtrGzEQFqWBukl-QXsQ9LzOjh670tGNk9bFUIidUw9ClUaOjL1ypd1C_33W2VBymRmG7zHDR8gnqOcAtb75sdkuHjZzVjM-50y3rGnfkRkDCRVILt-TGWiuKxC1-EA-lrKv64a1ms_Ir8XQp6Pto6NL7NH1MXU0Bfp1iAcfux1dxnI6WIdH7PpCt085Dbsn-tiV4YT5byzo6Rpt7s7Y-5yOdNVtFg90aXt7RS6CPRS8fu2X5PH-bnv7vVr__La6Xawrx6XuKyew1cJp74W24BVjCmtgwcpGAnhsAxNWgQjBCxYctk6AtOAkC8yiUPySrCZdn-zenHI82vzPJBvNyyLlnbF5_PCABrT7zTw6HKtQEm3jxtmHplFBeeZHrS-T1imnPwOW3uzTkLvxfMOUkK2U8OLIJ5TLqZSM4b8r1OaciJkSMedEzGsiI-vzxIqI-IYBSjWN4M-hholF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845755148</pqid></control><display><type>article</type><title>Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kuzu, Rdvan Salih ; Bagaglini, Leonardo ; Wang, Yi ; Dumitru, Corneliu Octavian ; Braham, Nassim Ait Ali ; Pasquali, Giorgio ; Santarelli, Filippo ; Trillo, Francesco ; Saha, Sudipan ; Zhu, Xiao Xiang</creator><creatorcontrib>Kuzu, Rdvan Salih ; Bagaglini, Leonardo ; Wang, Yi ; Dumitru, Corneliu Octavian ; Braham, Nassim Ait Ali ; Pasquali, Giorgio ; Santarelli, Filippo ; Trillo, Francesco ; Saha, Sudipan ; Zhu, Xiao Xiang</creatorcontrib><description>We introduce an unsupervised learning method that aims to identify building anomalies using Interferometric Synthetic Aperture Radar (InSAR) time-series data. Specifically, we leverage data obtained from the European Ground Motion Service to develop our proposed approach, which employs a long short-term memory autoencoder model and a reconstruction loss function based on a soft variant of the dynamic time warping, namely "soft-DTW". We deliberately utilize this loss function for its ability to compare time-series that are not aligned in time, unlike the other conventional reconstruction losses that do not account for time shifts. Moreover, we enhance the performance of anomaly detection by smoothing inputs with a Hann window and defining the learning objective to reconstruct the time order of randomly permuted input series. Our experimental findings, based on persistent scatterer data from Rome, Italy, reveal that our method outperforms several unsupervised machine learning and deep learning methods in detecting various types of building displacement, such as trend, noise, and step anomalies. Additionally, quantitative and qualitative evaluations validate the efficacy of our approach in identifying potentially anomalous buildings. Thus, our method offers a promising solution for detecting anomalies in PS-InSAR time-series, which could have substantial implications in the fields of urban monitoring and infrastructure management.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2023.3297267</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Anomaly detection ; autoencoders ; building displacements ; Buildings ; Deep learning ; Deformation ; Detection ; dynamic time warping (DTW) ; Encoding ; Ground motion ; Interferometric synthetic aperture radar ; Long short term memory ; long short-term memory (LSTM) networks ; Machine learning ; Monitoring ; persistent scatterer (PS) ; Reconstruction ; SAR (radar) ; Synthetic aperture radar ; synthetic aperture radar interferometry (InSAR) ; Time series ; Time series analysis ; Training ; Unsupervised learning</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2023, Vol.16, p.6931-6947</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c4e794c9dd49a1d8228e012fa56511de7f24a814ffd42fce7c415a1c52f2ae483</cites><orcidid>0000-0001-5707-1799 ; 0000-0002-3301-6063 ; 0000-0003-1352-3065 ; 0009-0001-3346-3373 ; 0000-0002-3096-6610 ; 0000-0002-4029-7430 ; 0000-0001-5530-3613 ; 0000-0002-1816-181X ; 0000-0002-9440-0720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuzu, Rdvan Salih</creatorcontrib><creatorcontrib>Bagaglini, Leonardo</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Dumitru, Corneliu Octavian</creatorcontrib><creatorcontrib>Braham, Nassim Ait Ali</creatorcontrib><creatorcontrib>Pasquali, Giorgio</creatorcontrib><creatorcontrib>Santarelli, Filippo</creatorcontrib><creatorcontrib>Trillo, Francesco</creatorcontrib><creatorcontrib>Saha, Sudipan</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><title>Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>We introduce an unsupervised learning method that aims to identify building anomalies using Interferometric Synthetic Aperture Radar (InSAR) time-series data. Specifically, we leverage data obtained from the European Ground Motion Service to develop our proposed approach, which employs a long short-term memory autoencoder model and a reconstruction loss function based on a soft variant of the dynamic time warping, namely "soft-DTW". We deliberately utilize this loss function for its ability to compare time-series that are not aligned in time, unlike the other conventional reconstruction losses that do not account for time shifts. Moreover, we enhance the performance of anomaly detection by smoothing inputs with a Hann window and defining the learning objective to reconstruct the time order of randomly permuted input series. Our experimental findings, based on persistent scatterer data from Rome, Italy, reveal that our method outperforms several unsupervised machine learning and deep learning methods in detecting various types of building displacement, such as trend, noise, and step anomalies. Additionally, quantitative and qualitative evaluations validate the efficacy of our approach in identifying potentially anomalous buildings. Thus, our method offers a promising solution for detecting anomalies in PS-InSAR time-series, which could have substantial implications in the fields of urban monitoring and infrastructure management.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>autoencoders</subject><subject>building displacements</subject><subject>Buildings</subject><subject>Deep learning</subject><subject>Deformation</subject><subject>Detection</subject><subject>dynamic time warping (DTW)</subject><subject>Encoding</subject><subject>Ground motion</subject><subject>Interferometric synthetic aperture radar</subject><subject>Long short term memory</subject><subject>long short-term memory (LSTM) networks</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>persistent scatterer (PS)</subject><subject>Reconstruction</subject><subject>SAR (radar)</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar interferometry (InSAR)</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Training</subject><subject>Unsupervised learning</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtrGzEQFqWBukl-QXsQ9LzOjh670tGNk9bFUIidUw9ClUaOjL1ypd1C_33W2VBymRmG7zHDR8gnqOcAtb75sdkuHjZzVjM-50y3rGnfkRkDCRVILt-TGWiuKxC1-EA-lrKv64a1ms_Ir8XQp6Pto6NL7NH1MXU0Bfp1iAcfux1dxnI6WIdH7PpCt085Dbsn-tiV4YT5byzo6Rpt7s7Y-5yOdNVtFg90aXt7RS6CPRS8fu2X5PH-bnv7vVr__La6Xawrx6XuKyew1cJp74W24BVjCmtgwcpGAnhsAxNWgQjBCxYctk6AtOAkC8yiUPySrCZdn-zenHI82vzPJBvNyyLlnbF5_PCABrT7zTw6HKtQEm3jxtmHplFBeeZHrS-T1imnPwOW3uzTkLvxfMOUkK2U8OLIJ5TLqZSM4b8r1OaciJkSMedEzGsiI-vzxIqI-IYBSjWN4M-hholF</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kuzu, Rdvan Salih</creator><creator>Bagaglini, Leonardo</creator><creator>Wang, Yi</creator><creator>Dumitru, Corneliu Octavian</creator><creator>Braham, Nassim Ait Ali</creator><creator>Pasquali, Giorgio</creator><creator>Santarelli, Filippo</creator><creator>Trillo, Francesco</creator><creator>Saha, Sudipan</creator><creator>Zhu, Xiao Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5707-1799</orcidid><orcidid>https://orcid.org/0000-0002-3301-6063</orcidid><orcidid>https://orcid.org/0000-0003-1352-3065</orcidid><orcidid>https://orcid.org/0009-0001-3346-3373</orcidid><orcidid>https://orcid.org/0000-0002-3096-6610</orcidid><orcidid>https://orcid.org/0000-0002-4029-7430</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><orcidid>https://orcid.org/0000-0002-1816-181X</orcidid><orcidid>https://orcid.org/0000-0002-9440-0720</orcidid></search><sort><creationdate>2023</creationdate><title>Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data</title><author>Kuzu, Rdvan Salih ; Bagaglini, Leonardo ; Wang, Yi ; Dumitru, Corneliu Octavian ; Braham, Nassim Ait Ali ; Pasquali, Giorgio ; Santarelli, Filippo ; Trillo, Francesco ; Saha, Sudipan ; Zhu, Xiao Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c4e794c9dd49a1d8228e012fa56511de7f24a814ffd42fce7c415a1c52f2ae483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>autoencoders</topic><topic>building displacements</topic><topic>Buildings</topic><topic>Deep learning</topic><topic>Deformation</topic><topic>Detection</topic><topic>dynamic time warping (DTW)</topic><topic>Encoding</topic><topic>Ground motion</topic><topic>Interferometric synthetic aperture radar</topic><topic>Long short term memory</topic><topic>long short-term memory (LSTM) networks</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>persistent scatterer (PS)</topic><topic>Reconstruction</topic><topic>SAR (radar)</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar interferometry (InSAR)</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Training</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzu, Rdvan Salih</creatorcontrib><creatorcontrib>Bagaglini, Leonardo</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Dumitru, Corneliu Octavian</creatorcontrib><creatorcontrib>Braham, Nassim Ait Ali</creatorcontrib><creatorcontrib>Pasquali, Giorgio</creatorcontrib><creatorcontrib>Santarelli, Filippo</creatorcontrib><creatorcontrib>Trillo, Francesco</creatorcontrib><creatorcontrib>Saha, Sudipan</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuzu, Rdvan Salih</au><au>Bagaglini, Leonardo</au><au>Wang, Yi</au><au>Dumitru, Corneliu Octavian</au><au>Braham, Nassim Ait Ali</au><au>Pasquali, Giorgio</au><au>Santarelli, Filippo</au><au>Trillo, Francesco</au><au>Saha, Sudipan</au><au>Zhu, Xiao Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2023</date><risdate>2023</risdate><volume>16</volume><spage>6931</spage><epage>6947</epage><pages>6931-6947</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>We introduce an unsupervised learning method that aims to identify building anomalies using Interferometric Synthetic Aperture Radar (InSAR) time-series data. Specifically, we leverage data obtained from the European Ground Motion Service to develop our proposed approach, which employs a long short-term memory autoencoder model and a reconstruction loss function based on a soft variant of the dynamic time warping, namely "soft-DTW". We deliberately utilize this loss function for its ability to compare time-series that are not aligned in time, unlike the other conventional reconstruction losses that do not account for time shifts. Moreover, we enhance the performance of anomaly detection by smoothing inputs with a Hann window and defining the learning objective to reconstruct the time order of randomly permuted input series. Our experimental findings, based on persistent scatterer data from Rome, Italy, reveal that our method outperforms several unsupervised machine learning and deep learning methods in detecting various types of building displacement, such as trend, noise, and step anomalies. Additionally, quantitative and qualitative evaluations validate the efficacy of our approach in identifying potentially anomalous buildings. Thus, our method offers a promising solution for detecting anomalies in PS-InSAR time-series, which could have substantial implications in the fields of urban monitoring and infrastructure management.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2023.3297267</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5707-1799</orcidid><orcidid>https://orcid.org/0000-0002-3301-6063</orcidid><orcidid>https://orcid.org/0000-0003-1352-3065</orcidid><orcidid>https://orcid.org/0009-0001-3346-3373</orcidid><orcidid>https://orcid.org/0000-0002-3096-6610</orcidid><orcidid>https://orcid.org/0000-0002-4029-7430</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><orcidid>https://orcid.org/0000-0002-1816-181X</orcidid><orcidid>https://orcid.org/0000-0002-9440-0720</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2023, Vol.16, p.6931-6947 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_10188664 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Anomalies Anomaly detection autoencoders building displacements Buildings Deep learning Deformation Detection dynamic time warping (DTW) Encoding Ground motion Interferometric synthetic aperture radar Long short term memory long short-term memory (LSTM) networks Machine learning Monitoring persistent scatterer (PS) Reconstruction SAR (radar) Synthetic aperture radar synthetic aperture radar interferometry (InSAR) Time series Time series analysis Training Unsupervised learning |
title | Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Detection%20of%20Building%20Displacements%20Through%20Unsupervised%20Learning%20From%20InSAR%20Data&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Kuzu,%20Rdvan%20Salih&rft.date=2023&rft.volume=16&rft.spage=6931&rft.epage=6947&rft.pages=6931-6947&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2023.3297267&rft_dat=%3Cproquest_ieee_%3E2845755148%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845755148&rft_id=info:pmid/&rft_ieee_id=10188664&rft_doaj_id=oai_doaj_org_article_19cb2deceb2d485ea6ccebdf668f8d2d&rfr_iscdi=true |