An Efficient Ring Polynomial Multiplication Accelerator for Homomorphic Encryption

Fully homomorphic encryption has become a key technique for solving the conflict between cloud services and privacy preservation. The most time-consuming step in homomorphic schemes is ring polynomial multiplication (RPM). Number theory transform (NTT) and Karatsuba algorithms are efficient to accel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-01, Vol.71 (1), p.1-1
Hauptverfasser: Ren, Jingwei, Du, Gaoming, Li, Zhenmin, Jia, Xianhu, Liao, Qiuzhu, Wang, Xiaolei, Zhang, Duoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 71
creator Ren, Jingwei
Du, Gaoming
Li, Zhenmin
Jia, Xianhu
Liao, Qiuzhu
Wang, Xiaolei
Zhang, Duoli
description Fully homomorphic encryption has become a key technique for solving the conflict between cloud services and privacy preservation. The most time-consuming step in homomorphic schemes is ring polynomial multiplication (RPM). Number theory transform (NTT) and Karatsuba algorithms are efficient to accelerate RPM, yet they are limited by the modulus operations and degrees of the polynomial. The systolic array is adopted for RPM processing recently. However, a modular reduction operation is required as post-processing which increases the overall delay. This paper has proposed a cyclic systolic array architecture without a dedicated reduction unit by re-routing the output of the systolic array for reusing, resulting in a 50% clock cycles saving of processing time. The corresponding FPGA implementation has a reduction of 72.9% and 33.8% when n=256 and n=1024 for equivalent area time product (eATP), respectively, therefore achieving an improved trade-off between performance and resource consumption.
doi_str_mv 10.1109/TCSII.2023.3295614
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10184137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184137</ieee_id><sourcerecordid>2912954776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-a5d7d684359fd75240e6861e57b496070f34812cb33d1030022afc78d4180d263</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N301yLKXaQkWp9RzSbKIp22TNbg_99u7aHmQYZg7vzRt-ANxjNMEYqafN7GO5nBBE6IQSxUvMLsAIcy4LKhS-HHamCiGYuAY3bbtDiChEyQispxHOvQ82uNjBdYhf8D3Vx5j2wdTw9VB3oamDNV1IEU6tdbXLpksZ-r4Xad9Xbr6DhfNo87EZZLfgypu6dXfnOQafz_PNbFGs3l6Ws-mqsISJrjC8ElUpGeXKV4IThlwpS-y42DJVIoE8ZRITu6W0woj2HxPjrZAVwxJVpKRj8Hi62-T0c3Btp3fpkGMfqYnCPQUmxKAiJ5XNqW2z87rJYW_yUWOkB3b6j50e2Okzu970cDIF59w_A5YMU0F_AR0yajE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912954776</pqid></control><display><type>article</type><title>An Efficient Ring Polynomial Multiplication Accelerator for Homomorphic Encryption</title><source>IEEE Electronic Library (IEL)</source><creator>Ren, Jingwei ; Du, Gaoming ; Li, Zhenmin ; Jia, Xianhu ; Liao, Qiuzhu ; Wang, Xiaolei ; Zhang, Duoli</creator><creatorcontrib>Ren, Jingwei ; Du, Gaoming ; Li, Zhenmin ; Jia, Xianhu ; Liao, Qiuzhu ; Wang, Xiaolei ; Zhang, Duoli</creatorcontrib><description>Fully homomorphic encryption has become a key technique for solving the conflict between cloud services and privacy preservation. The most time-consuming step in homomorphic schemes is ring polynomial multiplication (RPM). Number theory transform (NTT) and Karatsuba algorithms are efficient to accelerate RPM, yet they are limited by the modulus operations and degrees of the polynomial. The systolic array is adopted for RPM processing recently. However, a modular reduction operation is required as post-processing which increases the overall delay. This paper has proposed a cyclic systolic array architecture without a dedicated reduction unit by re-routing the output of the systolic array for reusing, resulting in a 50% clock cycles saving of processing time. The corresponding FPGA implementation has a reduction of 72.9% and 33.8% when n=256 and n=1024 for equivalent area time product (eATP), respectively, therefore achieving an improved trade-off between performance and resource consumption.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3295614</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arithmetic ; Arrays ; ATP ; Cloud computing ; Computer architecture ; Convolution ; Delays ; FPGA ; Fully homomorphic encryption ; Homomorphic encryption ; negative wrapped convolution ; Number theory ; Polynomials ; Reduction ; Rings (mathematics) ; RLWE ; systolic array ; Systolic arrays ; Transforms</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-01, Vol.71 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-a5d7d684359fd75240e6861e57b496070f34812cb33d1030022afc78d4180d263</cites><orcidid>0000-0002-9515-2829 ; 0000-0002-6730-3167 ; 0000-0001-9920-2435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren, Jingwei</creatorcontrib><creatorcontrib>Du, Gaoming</creatorcontrib><creatorcontrib>Li, Zhenmin</creatorcontrib><creatorcontrib>Jia, Xianhu</creatorcontrib><creatorcontrib>Liao, Qiuzhu</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhang, Duoli</creatorcontrib><title>An Efficient Ring Polynomial Multiplication Accelerator for Homomorphic Encryption</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Fully homomorphic encryption has become a key technique for solving the conflict between cloud services and privacy preservation. The most time-consuming step in homomorphic schemes is ring polynomial multiplication (RPM). Number theory transform (NTT) and Karatsuba algorithms are efficient to accelerate RPM, yet they are limited by the modulus operations and degrees of the polynomial. The systolic array is adopted for RPM processing recently. However, a modular reduction operation is required as post-processing which increases the overall delay. This paper has proposed a cyclic systolic array architecture without a dedicated reduction unit by re-routing the output of the systolic array for reusing, resulting in a 50% clock cycles saving of processing time. The corresponding FPGA implementation has a reduction of 72.9% and 33.8% when n=256 and n=1024 for equivalent area time product (eATP), respectively, therefore achieving an improved trade-off between performance and resource consumption.</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Arrays</subject><subject>ATP</subject><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Delays</subject><subject>FPGA</subject><subject>Fully homomorphic encryption</subject><subject>Homomorphic encryption</subject><subject>negative wrapped convolution</subject><subject>Number theory</subject><subject>Polynomials</subject><subject>Reduction</subject><subject>Rings (mathematics)</subject><subject>RLWE</subject><subject>systolic array</subject><subject>Systolic arrays</subject><subject>Transforms</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKtfQDwEPG_N301yLKXaQkWp9RzSbKIp22TNbg_99u7aHmQYZg7vzRt-ANxjNMEYqafN7GO5nBBE6IQSxUvMLsAIcy4LKhS-HHamCiGYuAY3bbtDiChEyQispxHOvQ82uNjBdYhf8D3Vx5j2wdTw9VB3oamDNV1IEU6tdbXLpksZ-r4Xad9Xbr6DhfNo87EZZLfgypu6dXfnOQafz_PNbFGs3l6Ws-mqsISJrjC8ElUpGeXKV4IThlwpS-y42DJVIoE8ZRITu6W0woj2HxPjrZAVwxJVpKRj8Hi62-T0c3Btp3fpkGMfqYnCPQUmxKAiJ5XNqW2z87rJYW_yUWOkB3b6j50e2Okzu970cDIF59w_A5YMU0F_AR0yajE</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Ren, Jingwei</creator><creator>Du, Gaoming</creator><creator>Li, Zhenmin</creator><creator>Jia, Xianhu</creator><creator>Liao, Qiuzhu</creator><creator>Wang, Xiaolei</creator><creator>Zhang, Duoli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9515-2829</orcidid><orcidid>https://orcid.org/0000-0002-6730-3167</orcidid><orcidid>https://orcid.org/0000-0001-9920-2435</orcidid></search><sort><creationdate>20240101</creationdate><title>An Efficient Ring Polynomial Multiplication Accelerator for Homomorphic Encryption</title><author>Ren, Jingwei ; Du, Gaoming ; Li, Zhenmin ; Jia, Xianhu ; Liao, Qiuzhu ; Wang, Xiaolei ; Zhang, Duoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-a5d7d684359fd75240e6861e57b496070f34812cb33d1030022afc78d4180d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Arrays</topic><topic>ATP</topic><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Delays</topic><topic>FPGA</topic><topic>Fully homomorphic encryption</topic><topic>Homomorphic encryption</topic><topic>negative wrapped convolution</topic><topic>Number theory</topic><topic>Polynomials</topic><topic>Reduction</topic><topic>Rings (mathematics)</topic><topic>RLWE</topic><topic>systolic array</topic><topic>Systolic arrays</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Jingwei</creatorcontrib><creatorcontrib>Du, Gaoming</creatorcontrib><creatorcontrib>Li, Zhenmin</creatorcontrib><creatorcontrib>Jia, Xianhu</creatorcontrib><creatorcontrib>Liao, Qiuzhu</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhang, Duoli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren, Jingwei</au><au>Du, Gaoming</au><au>Li, Zhenmin</au><au>Jia, Xianhu</au><au>Liao, Qiuzhu</au><au>Wang, Xiaolei</au><au>Zhang, Duoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Ring Polynomial Multiplication Accelerator for Homomorphic Encryption</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>71</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>Fully homomorphic encryption has become a key technique for solving the conflict between cloud services and privacy preservation. The most time-consuming step in homomorphic schemes is ring polynomial multiplication (RPM). Number theory transform (NTT) and Karatsuba algorithms are efficient to accelerate RPM, yet they are limited by the modulus operations and degrees of the polynomial. The systolic array is adopted for RPM processing recently. However, a modular reduction operation is required as post-processing which increases the overall delay. This paper has proposed a cyclic systolic array architecture without a dedicated reduction unit by re-routing the output of the systolic array for reusing, resulting in a 50% clock cycles saving of processing time. The corresponding FPGA implementation has a reduction of 72.9% and 33.8% when n=256 and n=1024 for equivalent area time product (eATP), respectively, therefore achieving an improved trade-off between performance and resource consumption.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3295614</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9515-2829</orcidid><orcidid>https://orcid.org/0000-0002-6730-3167</orcidid><orcidid>https://orcid.org/0000-0001-9920-2435</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2024-01, Vol.71 (1), p.1-1
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_10184137
source IEEE Electronic Library (IEL)
subjects Algorithms
Arithmetic
Arrays
ATP
Cloud computing
Computer architecture
Convolution
Delays
FPGA
Fully homomorphic encryption
Homomorphic encryption
negative wrapped convolution
Number theory
Polynomials
Reduction
Rings (mathematics)
RLWE
systolic array
Systolic arrays
Transforms
title An Efficient Ring Polynomial Multiplication Accelerator for Homomorphic Encryption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Ring%20Polynomial%20Multiplication%20Accelerator%20for%20Homomorphic%20Encryption&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Ren,%20Jingwei&rft.date=2024-01-01&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3295614&rft_dat=%3Cproquest_RIE%3E2912954776%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912954776&rft_id=info:pmid/&rft_ieee_id=10184137&rfr_iscdi=true