Bayesian seismic tomography based on velocity-space Stein variational gradient descent for physics-informed neural network

In this study, we propose a Bayesian seismic tomography inference method using physics-informed neural networks (PINN). PINN represents a recent advance in deep learning, offering the possibility to enhance physics-based simulations and inverse analyses. PINN-based deterministic seismic tomography u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Agata, Ryoichiro, Shiraishi, Kazuya, Fujie, Gou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Agata, Ryoichiro
Shiraishi, Kazuya
Fujie, Gou
description In this study, we propose a Bayesian seismic tomography inference method using physics-informed neural networks (PINN). PINN represents a recent advance in deep learning, offering the possibility to enhance physics-based simulations and inverse analyses. PINN-based deterministic seismic tomography uses two separate neural networks (NNs) to predict seismic velocity and travel time. Naive Bayesian NN (BNN) approaches are unable to handle the high-dimensional spaces spanned by the weight parameters of these two NNs. Hence, we reformulate the problem to perform the Bayesian estimation exclusively on the NN predicting seismic velocity, while the NN predicting travel time is used only for deterministic travel time calculations, with the help of the adjoint method. Furthermore, we perform BNN by introducing a function-space Stein variational gradient descent (SVGD), which performs particle-based variational inference in the space of the function predicted by the NN (i.e., seismic velocity), instead of in the traditional weight space. The result is a velocity-space SVGD for the PINN-based seismic tomography model (vSVGD-PINN-ST) that decreases the complexity of the problem thus enabling a more accurate and physically consistent Bayesian estimation, as confirmed by synthetic tests in one-and two-dimensional tomographic problem settings. The method allows PINN to be applied to Bayesian seismic tomography practically for the first time. Not only that, it can be a powerful tool not only for geophysical but also for general PINN-based Bayesian estimation problems associated with compatible NNs formulations and similar, or reduced, complexity.
doi_str_mv 10.1109/TGRS.2023.3295414
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10184054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184054</ieee_id><sourcerecordid>2875572770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b16ea179fad734634af90e51434621749b4a7f335e2fbe06cb484e8241835cf3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOKcfQPAh4HNn_jbtow6dwkBwey9pequZW1OTTKmf3pTtwafDufzO4XIQuqZkRikp79aLt9WMEcZnnJVSUHGCJlTKIiO5EKdoQmiZZ6wo2Tm6CGFDCBWSqgn6fdADBKs7HMCGnTU4up1797r_GHCtAzTYdfgbts7YOGSh1wbwKoJNR-2tjtZ1eotToLHQRdxAMKO2zuNUEawJme2S26WmDvY-wR3EH-c_L9FZq7cBro46Reunx_X8OVu-Ll7m98vMsFLErKY5aKrKVjeKi5wL3ZYEJBXJMKpEWQutWs4lsLYGkptaFAIKJmjBpWn5FN0eanvvvvYQYrVxe5-eDhUrlJSKKUUSRQ-U8S4ED23Ve7vTfqgoqcaFq3Hhaly4Oi6cMjeHjAWAfzwtBJGC_wFln3n7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875572770</pqid></control><display><type>article</type><title>Bayesian seismic tomography based on velocity-space Stein variational gradient descent for physics-informed neural network</title><source>IEEE Electronic Library (IEL)</source><creator>Agata, Ryoichiro ; Shiraishi, Kazuya ; Fujie, Gou</creator><creatorcontrib>Agata, Ryoichiro ; Shiraishi, Kazuya ; Fujie, Gou</creatorcontrib><description>In this study, we propose a Bayesian seismic tomography inference method using physics-informed neural networks (PINN). PINN represents a recent advance in deep learning, offering the possibility to enhance physics-based simulations and inverse analyses. PINN-based deterministic seismic tomography uses two separate neural networks (NNs) to predict seismic velocity and travel time. Naive Bayesian NN (BNN) approaches are unable to handle the high-dimensional spaces spanned by the weight parameters of these two NNs. Hence, we reformulate the problem to perform the Bayesian estimation exclusively on the NN predicting seismic velocity, while the NN predicting travel time is used only for deterministic travel time calculations, with the help of the adjoint method. Furthermore, we perform BNN by introducing a function-space Stein variational gradient descent (SVGD), which performs particle-based variational inference in the space of the function predicted by the NN (i.e., seismic velocity), instead of in the traditional weight space. The result is a velocity-space SVGD for the PINN-based seismic tomography model (vSVGD-PINN-ST) that decreases the complexity of the problem thus enabling a more accurate and physically consistent Bayesian estimation, as confirmed by synthetic tests in one-and two-dimensional tomographic problem settings. The method allows PINN to be applied to Bayesian seismic tomography practically for the first time. Not only that, it can be a powerful tool not only for geophysical but also for general PINN-based Bayesian estimation problems associated with compatible NNs formulations and similar, or reduced, complexity.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3295414</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Bayes methods ; Bayesian analysis ; Bayesian neural network ; Bayesian theory ; Complexity ; Deep learning ; Estimation ; function-space stein variation gradient descent (fSVGD) ; Inference ; Machine learning ; Mathematical models ; Neural networks ; Physics ; physics-informed neural network (PINN) ; Probability density function ; Probability theory ; Seismic tomography ; Seismic velocities ; Space exploration ; Tomography ; Travel ; Travel time ; Velocity ; Weight</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b16ea179fad734634af90e51434621749b4a7f335e2fbe06cb484e8241835cf3</citedby><cites>FETCH-LOGICAL-c294t-b16ea179fad734634af90e51434621749b4a7f335e2fbe06cb484e8241835cf3</cites><orcidid>0000-0002-4866-8267 ; 0000-0001-8200-9081 ; 0000-0002-6292-7034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184054$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agata, Ryoichiro</creatorcontrib><creatorcontrib>Shiraishi, Kazuya</creatorcontrib><creatorcontrib>Fujie, Gou</creatorcontrib><title>Bayesian seismic tomography based on velocity-space Stein variational gradient descent for physics-informed neural network</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In this study, we propose a Bayesian seismic tomography inference method using physics-informed neural networks (PINN). PINN represents a recent advance in deep learning, offering the possibility to enhance physics-based simulations and inverse analyses. PINN-based deterministic seismic tomography uses two separate neural networks (NNs) to predict seismic velocity and travel time. Naive Bayesian NN (BNN) approaches are unable to handle the high-dimensional spaces spanned by the weight parameters of these two NNs. Hence, we reformulate the problem to perform the Bayesian estimation exclusively on the NN predicting seismic velocity, while the NN predicting travel time is used only for deterministic travel time calculations, with the help of the adjoint method. Furthermore, we perform BNN by introducing a function-space Stein variational gradient descent (SVGD), which performs particle-based variational inference in the space of the function predicted by the NN (i.e., seismic velocity), instead of in the traditional weight space. The result is a velocity-space SVGD for the PINN-based seismic tomography model (vSVGD-PINN-ST) that decreases the complexity of the problem thus enabling a more accurate and physically consistent Bayesian estimation, as confirmed by synthetic tests in one-and two-dimensional tomographic problem settings. The method allows PINN to be applied to Bayesian seismic tomography practically for the first time. Not only that, it can be a powerful tool not only for geophysical but also for general PINN-based Bayesian estimation problems associated with compatible NNs formulations and similar, or reduced, complexity.</description><subject>Artificial neural networks</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian neural network</subject><subject>Bayesian theory</subject><subject>Complexity</subject><subject>Deep learning</subject><subject>Estimation</subject><subject>function-space stein variation gradient descent (fSVGD)</subject><subject>Inference</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Physics</subject><subject>physics-informed neural network (PINN)</subject><subject>Probability density function</subject><subject>Probability theory</subject><subject>Seismic tomography</subject><subject>Seismic velocities</subject><subject>Space exploration</subject><subject>Tomography</subject><subject>Travel</subject><subject>Travel time</subject><subject>Velocity</subject><subject>Weight</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOKcfQPAh4HNn_jbtow6dwkBwey9pequZW1OTTKmf3pTtwafDufzO4XIQuqZkRikp79aLt9WMEcZnnJVSUHGCJlTKIiO5EKdoQmiZZ6wo2Tm6CGFDCBWSqgn6fdADBKs7HMCGnTU4up1797r_GHCtAzTYdfgbts7YOGSh1wbwKoJNR-2tjtZ1eotToLHQRdxAMKO2zuNUEawJme2S26WmDvY-wR3EH-c_L9FZq7cBro46Reunx_X8OVu-Ll7m98vMsFLErKY5aKrKVjeKi5wL3ZYEJBXJMKpEWQutWs4lsLYGkptaFAIKJmjBpWn5FN0eanvvvvYQYrVxe5-eDhUrlJSKKUUSRQ-U8S4ED23Ve7vTfqgoqcaFq3Hhaly4Oi6cMjeHjAWAfzwtBJGC_wFln3n7</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Agata, Ryoichiro</creator><creator>Shiraishi, Kazuya</creator><creator>Fujie, Gou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4866-8267</orcidid><orcidid>https://orcid.org/0000-0001-8200-9081</orcidid><orcidid>https://orcid.org/0000-0002-6292-7034</orcidid></search><sort><creationdate>20230101</creationdate><title>Bayesian seismic tomography based on velocity-space Stein variational gradient descent for physics-informed neural network</title><author>Agata, Ryoichiro ; Shiraishi, Kazuya ; Fujie, Gou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b16ea179fad734634af90e51434621749b4a7f335e2fbe06cb484e8241835cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian neural network</topic><topic>Bayesian theory</topic><topic>Complexity</topic><topic>Deep learning</topic><topic>Estimation</topic><topic>function-space stein variation gradient descent (fSVGD)</topic><topic>Inference</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Physics</topic><topic>physics-informed neural network (PINN)</topic><topic>Probability density function</topic><topic>Probability theory</topic><topic>Seismic tomography</topic><topic>Seismic velocities</topic><topic>Space exploration</topic><topic>Tomography</topic><topic>Travel</topic><topic>Travel time</topic><topic>Velocity</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agata, Ryoichiro</creatorcontrib><creatorcontrib>Shiraishi, Kazuya</creatorcontrib><creatorcontrib>Fujie, Gou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agata, Ryoichiro</au><au>Shiraishi, Kazuya</au><au>Fujie, Gou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian seismic tomography based on velocity-space Stein variational gradient descent for physics-informed neural network</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In this study, we propose a Bayesian seismic tomography inference method using physics-informed neural networks (PINN). PINN represents a recent advance in deep learning, offering the possibility to enhance physics-based simulations and inverse analyses. PINN-based deterministic seismic tomography uses two separate neural networks (NNs) to predict seismic velocity and travel time. Naive Bayesian NN (BNN) approaches are unable to handle the high-dimensional spaces spanned by the weight parameters of these two NNs. Hence, we reformulate the problem to perform the Bayesian estimation exclusively on the NN predicting seismic velocity, while the NN predicting travel time is used only for deterministic travel time calculations, with the help of the adjoint method. Furthermore, we perform BNN by introducing a function-space Stein variational gradient descent (SVGD), which performs particle-based variational inference in the space of the function predicted by the NN (i.e., seismic velocity), instead of in the traditional weight space. The result is a velocity-space SVGD for the PINN-based seismic tomography model (vSVGD-PINN-ST) that decreases the complexity of the problem thus enabling a more accurate and physically consistent Bayesian estimation, as confirmed by synthetic tests in one-and two-dimensional tomographic problem settings. The method allows PINN to be applied to Bayesian seismic tomography practically for the first time. Not only that, it can be a powerful tool not only for geophysical but also for general PINN-based Bayesian estimation problems associated with compatible NNs formulations and similar, or reduced, complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3295414</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4866-8267</orcidid><orcidid>https://orcid.org/0000-0001-8200-9081</orcidid><orcidid>https://orcid.org/0000-0002-6292-7034</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10184054
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Bayes methods
Bayesian analysis
Bayesian neural network
Bayesian theory
Complexity
Deep learning
Estimation
function-space stein variation gradient descent (fSVGD)
Inference
Machine learning
Mathematical models
Neural networks
Physics
physics-informed neural network (PINN)
Probability density function
Probability theory
Seismic tomography
Seismic velocities
Space exploration
Tomography
Travel
Travel time
Velocity
Weight
title Bayesian seismic tomography based on velocity-space Stein variational gradient descent for physics-informed neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20seismic%20tomography%20based%20on%20velocity-space%20Stein%20variational%20gradient%20descent%20for%20physics-informed%20neural%20network&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Agata,%20Ryoichiro&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3295414&rft_dat=%3Cproquest_RIE%3E2875572770%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875572770&rft_id=info:pmid/&rft_ieee_id=10184054&rfr_iscdi=true