PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS
To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2024-02, p.1-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | |
creator | Zhang, Man Li, Xinghua Miao, Yinbin Luo, Bin Ren, Yanbing Ma, Siqi |
description | To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90\% and decreasing the malicious users' utilities significantly. |
doi_str_mv | 10.1109/TKDE.2023.3295451 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10184033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184033</ieee_id><sourcerecordid>10_1109_TKDE_2023_3295451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</originalsourceid><addsrcrecordid>eNpNkEFLAzEUhIMoWKs_QPCQP5D63ibZJN5qu2ppiwXreUnSFCN2K8la2H_vlnrw8uYxzMzhI-QWYYQI5n49n1ajAgo-4oWRQuIZGaCUmhVo8Lz_QSATXKhLcpXzJwBopXFAlqtqPH-gqxQP1nesaj5s48OGzvrbtPEQ6DL43ot5R7f7RKcxtym6n7bPzNm42TfdLrYdjQ1dPL5dk4ut_crh5k-H5P2pWk9e2OL1eTYZL5hHU7bMgfSFBcO1B7RKbow2Shh0JSjrvBFYWq1LDcaqQjttQTmwQm-stM5wz4cET7s-7XNOYVt_p7izqasR6iOP-sijPvKo_3j0nbtTJ4YQ_uVRC-Cc_wKnkFrT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Man ; Li, Xinghua ; Miao, Yinbin ; Luo, Bin ; Ren, Yanbing ; Ma, Siqi</creator><creatorcontrib>Zhang, Man ; Li, Xinghua ; Miao, Yinbin ; Luo, Bin ; Ren, Yanbing ; Ma, Siqi</creatorcontrib><description>To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and decreasing the malicious users' utilities significantly.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2023.3295451</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distributed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -anonymity ; game theory ; Hospitals ; incentive mechanisms ; Lakes ; location privacy ; location-based service ; Privacy ; Semantics ; Servers ; Threat modeling ; Trajectory</subject><ispartof>IEEE transactions on knowledge and data engineering, 2024-02, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</citedby><cites>FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</cites><orcidid>0000-0001-5128-8604 ; 0000-0002-0510-9510 ; 0000-0002-5583-4155 ; 0000-0002-6780-1545 ; 0000-0003-3260-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Xinghua</creatorcontrib><creatorcontrib>Miao, Yinbin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Ren, Yanbing</creatorcontrib><creatorcontrib>Ma, Siqi</creatorcontrib><title>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and decreasing the malicious users' utilities significantly.</description><subject>Distributed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -anonymity</subject><subject>game theory</subject><subject>Hospitals</subject><subject>incentive mechanisms</subject><subject>Lakes</subject><subject>location privacy</subject><subject>location-based service</subject><subject>Privacy</subject><subject>Semantics</subject><subject>Servers</subject><subject>Threat modeling</subject><subject>Trajectory</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEUhIMoWKs_QPCQP5D63ibZJN5qu2ppiwXreUnSFCN2K8la2H_vlnrw8uYxzMzhI-QWYYQI5n49n1ajAgo-4oWRQuIZGaCUmhVo8Lz_QSATXKhLcpXzJwBopXFAlqtqPH-gqxQP1nesaj5s48OGzvrbtPEQ6DL43ot5R7f7RKcxtym6n7bPzNm42TfdLrYdjQ1dPL5dk4ut_crh5k-H5P2pWk9e2OL1eTYZL5hHU7bMgfSFBcO1B7RKbow2Shh0JSjrvBFYWq1LDcaqQjttQTmwQm-stM5wz4cET7s-7XNOYVt_p7izqasR6iOP-sijPvKo_3j0nbtTJ4YQ_uVRC-Cc_wKnkFrT</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhang, Man</creator><creator>Li, Xinghua</creator><creator>Miao, Yinbin</creator><creator>Luo, Bin</creator><creator>Ren, Yanbing</creator><creator>Ma, Siqi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5128-8604</orcidid><orcidid>https://orcid.org/0000-0002-0510-9510</orcidid><orcidid>https://orcid.org/0000-0002-5583-4155</orcidid><orcidid>https://orcid.org/0000-0002-6780-1545</orcidid><orcidid>https://orcid.org/0000-0003-3260-4530</orcidid></search><sort><creationdate>20240201</creationdate><title>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</title><author>Zhang, Man ; Li, Xinghua ; Miao, Yinbin ; Luo, Bin ; Ren, Yanbing ; Ma, Siqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distributed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -anonymity</topic><topic>game theory</topic><topic>Hospitals</topic><topic>incentive mechanisms</topic><topic>Lakes</topic><topic>location privacy</topic><topic>location-based service</topic><topic>Privacy</topic><topic>Semantics</topic><topic>Servers</topic><topic>Threat modeling</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Xinghua</creatorcontrib><creatorcontrib>Miao, Yinbin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Ren, Yanbing</creatorcontrib><creatorcontrib>Ma, Siqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Man</au><au>Li, Xinghua</au><au>Miao, Yinbin</au><au>Luo, Bin</au><au>Ren, Yanbing</au><au>Ma, Siqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2024-02-01</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and decreasing the malicious users' utilities significantly.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2023.3295451</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5128-8604</orcidid><orcidid>https://orcid.org/0000-0002-0510-9510</orcidid><orcidid>https://orcid.org/0000-0002-5583-4155</orcidid><orcidid>https://orcid.org/0000-0002-6780-1545</orcidid><orcidid>https://orcid.org/0000-0003-3260-4530</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2024-02, p.1-14 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_10184033 |
source | IEEE Electronic Library (IEL) |
subjects | Distributed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -anonymity game theory Hospitals incentive mechanisms Lakes location privacy location-based service Privacy Semantics Servers Threat modeling Trajectory |
title | PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEAK:%20Privacy-Enhanced%20Incentive%20Mechanism%20for%20Distributed%20K-Anonymity%20in%20LBS&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhang,%20Man&rft.date=2024-02-01&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2023.3295451&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2023_3295451%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10184033&rfr_iscdi=true |