PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS

To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2024-02, p.1-14
Hauptverfasser: Zhang, Man, Li, Xinghua, Miao, Yinbin, Luo, Bin, Ren, Yanbing, Ma, Siqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on knowledge and data engineering
container_volume
creator Zhang, Man
Li, Xinghua
Miao, Yinbin
Luo, Bin
Ren, Yanbing
Ma, Siqi
description To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90\% and decreasing the malicious users' utilities significantly.
doi_str_mv 10.1109/TKDE.2023.3295451
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10184033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184033</ieee_id><sourcerecordid>10_1109_TKDE_2023_3295451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</originalsourceid><addsrcrecordid>eNpNkEFLAzEUhIMoWKs_QPCQP5D63ibZJN5qu2ppiwXreUnSFCN2K8la2H_vlnrw8uYxzMzhI-QWYYQI5n49n1ajAgo-4oWRQuIZGaCUmhVo8Lz_QSATXKhLcpXzJwBopXFAlqtqPH-gqxQP1nesaj5s48OGzvrbtPEQ6DL43ot5R7f7RKcxtym6n7bPzNm42TfdLrYdjQ1dPL5dk4ut_crh5k-H5P2pWk9e2OL1eTYZL5hHU7bMgfSFBcO1B7RKbow2Shh0JSjrvBFYWq1LDcaqQjttQTmwQm-stM5wz4cET7s-7XNOYVt_p7izqasR6iOP-sijPvKo_3j0nbtTJ4YQ_uVRC-Cc_wKnkFrT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Man ; Li, Xinghua ; Miao, Yinbin ; Luo, Bin ; Ren, Yanbing ; Ma, Siqi</creator><creatorcontrib>Zhang, Man ; Li, Xinghua ; Miao, Yinbin ; Luo, Bin ; Ren, Yanbing ; Ma, Siqi</creatorcontrib><description>To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\%&lt;/tex-math&gt;&lt;/inline-formula&gt; and decreasing the malicious users' utilities significantly.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2023.3295451</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distributed &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -anonymity ; game theory ; Hospitals ; incentive mechanisms ; Lakes ; location privacy ; location-based service ; Privacy ; Semantics ; Servers ; Threat modeling ; Trajectory</subject><ispartof>IEEE transactions on knowledge and data engineering, 2024-02, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</citedby><cites>FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</cites><orcidid>0000-0001-5128-8604 ; 0000-0002-0510-9510 ; 0000-0002-5583-4155 ; 0000-0002-6780-1545 ; 0000-0003-3260-4530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184033$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184033$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Xinghua</creatorcontrib><creatorcontrib>Miao, Yinbin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Ren, Yanbing</creatorcontrib><creatorcontrib>Ma, Siqi</creatorcontrib><title>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\%&lt;/tex-math&gt;&lt;/inline-formula&gt; and decreasing the malicious users' utilities significantly.</description><subject>Distributed &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -anonymity</subject><subject>game theory</subject><subject>Hospitals</subject><subject>incentive mechanisms</subject><subject>Lakes</subject><subject>location privacy</subject><subject>location-based service</subject><subject>Privacy</subject><subject>Semantics</subject><subject>Servers</subject><subject>Threat modeling</subject><subject>Trajectory</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEUhIMoWKs_QPCQP5D63ibZJN5qu2ppiwXreUnSFCN2K8la2H_vlnrw8uYxzMzhI-QWYYQI5n49n1ajAgo-4oWRQuIZGaCUmhVo8Lz_QSATXKhLcpXzJwBopXFAlqtqPH-gqxQP1nesaj5s48OGzvrbtPEQ6DL43ot5R7f7RKcxtym6n7bPzNm42TfdLrYdjQ1dPL5dk4ut_crh5k-H5P2pWk9e2OL1eTYZL5hHU7bMgfSFBcO1B7RKbow2Shh0JSjrvBFYWq1LDcaqQjttQTmwQm-stM5wz4cET7s-7XNOYVt_p7izqasR6iOP-sijPvKo_3j0nbtTJ4YQ_uVRC-Cc_wKnkFrT</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhang, Man</creator><creator>Li, Xinghua</creator><creator>Miao, Yinbin</creator><creator>Luo, Bin</creator><creator>Ren, Yanbing</creator><creator>Ma, Siqi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5128-8604</orcidid><orcidid>https://orcid.org/0000-0002-0510-9510</orcidid><orcidid>https://orcid.org/0000-0002-5583-4155</orcidid><orcidid>https://orcid.org/0000-0002-6780-1545</orcidid><orcidid>https://orcid.org/0000-0003-3260-4530</orcidid></search><sort><creationdate>20240201</creationdate><title>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</title><author>Zhang, Man ; Li, Xinghua ; Miao, Yinbin ; Luo, Bin ; Ren, Yanbing ; Ma, Siqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-b05c2a0938c01a75d9897491b607abc9416a886809a728b8a07b0a48da5ab93c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distributed &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;K -anonymity</topic><topic>game theory</topic><topic>Hospitals</topic><topic>incentive mechanisms</topic><topic>Lakes</topic><topic>location privacy</topic><topic>location-based service</topic><topic>Privacy</topic><topic>Semantics</topic><topic>Servers</topic><topic>Threat modeling</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Man</creatorcontrib><creatorcontrib>Li, Xinghua</creatorcontrib><creatorcontrib>Miao, Yinbin</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Ren, Yanbing</creatorcontrib><creatorcontrib>Ma, Siqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Man</au><au>Li, Xinghua</au><au>Miao, Yinbin</au><au>Luo, Bin</au><au>Ren, Yanbing</au><au>Ma, Siqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2024-02-01</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>To motivate users' assistance for protecting others' location privacy by distributed K -anonymity in Location-Based Service (LBS), many incentive mechanisms have been proposed, where users obtain monetary compensation for their assistance. However, most existing distributed K -anonymity incentive mechanisms rely on trusted third parties and ignore users' malicious strategies, which destroys LBS's distributed structure as well as leads to users' privacy leakage and incentive ineffectiveness. To solve the above problems, we propose a P rivacy- E nhanced incentive mech A nism for distributed K -anonymity (PEAK). With determining the monetary transaction relationship and location transmission between users, PEAK enables the anonymous cloaking region construction without the trusted server. Meanwhile, PEAK devises role identification mechanism and accountability mechanism to restrain and punish malicious users, which protects users' location privacy and implements effective motivation on users' assistance. Theoretical analysis based on the game theory shows that PEAK constrains users' malicious strategies while satisfying individual rationality, computational efficiency, and satisfaction ratio. Extensive experiments based on the real-world dataset demonstrate that PEAK improves security and feasibility, especially reaching the success rate of anonymous cloaking region construction to more than 90&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\%&lt;/tex-math&gt;&lt;/inline-formula&gt; and decreasing the malicious users' utilities significantly.</abstract><pub>IEEE</pub><doi>10.1109/TKDE.2023.3295451</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5128-8604</orcidid><orcidid>https://orcid.org/0000-0002-0510-9510</orcidid><orcidid>https://orcid.org/0000-0002-5583-4155</orcidid><orcidid>https://orcid.org/0000-0002-6780-1545</orcidid><orcidid>https://orcid.org/0000-0003-3260-4530</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2024-02, p.1-14
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_10184033
source IEEE Electronic Library (IEL)
subjects Distributed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -anonymity
game theory
Hospitals
incentive mechanisms
Lakes
location privacy
location-based service
Privacy
Semantics
Servers
Threat modeling
Trajectory
title PEAK: Privacy-Enhanced Incentive Mechanism for Distributed K-Anonymity in LBS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEAK:%20Privacy-Enhanced%20Incentive%20Mechanism%20for%20Distributed%20K-Anonymity%20in%20LBS&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Zhang,%20Man&rft.date=2024-02-01&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2023.3295451&rft_dat=%3Ccrossref_RIE%3E10_1109_TKDE_2023_3295451%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10184033&rfr_iscdi=true