Multi-level context feature fusion for semantic segmentation of ALS point cloud

Semantic segmentation of airborne laser scanning (ALS) point clouds using deep learning is a hot research in remote sensing and photogrammetry. A current trend is to aggregate contextual features from different scales for boosting network generalization and diversity discrimination capabilities. One...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2023-07, p.1-1
Hauptverfasser: Zeng, Tao, Luo, Fulin, Guo, Tan, Gong, Xiuwen, Xue, Jingyun, Li, Hanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume
creator Zeng, Tao
Luo, Fulin
Guo, Tan
Gong, Xiuwen
Xue, Jingyun
Li, Hanshan
description Semantic segmentation of airborne laser scanning (ALS) point clouds using deep learning is a hot research in remote sensing and photogrammetry. A current trend is to aggregate contextual features from different scales for boosting network generalization and diversity discrimination capabilities. One main challenge is how to achieve effective fusion with multiscale information. In this letter, we propose a muti-level context feature fusion network (MCFN) for semantic segmentation of ALS point cloud based on an encoder-decoder structure. More specifically, we design the squeeze-expansion shared MLP module (SE-MLP) following kernel point convolution (KPConv) in the encoding stage, which can extend the receptive field of KPConv. To aggregate low-level features and high-level representations, we establish channel self-attention between skip connections. In the decoding stage, we develop a cross-layer attention fusion module (CAF) to generate additional discriminative channel features by fusing multi-scale features at different upsampling layers. Experiments on the ISPRS and LASDU datasets demonstrate the superiority of the proposed method. Code: https://github.com/SC-shendazt/MCFN.
doi_str_mv 10.1109/LGRS.2023.3294246
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10177945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10177945</ieee_id><sourcerecordid>10177945</sourcerecordid><originalsourceid>FETCH-ieee_primary_101779453</originalsourceid><addsrcrecordid>eNqFybsKwjAYQOEMCtbLAwgOeYHWJE1tO4p4GRTBOriVUP9IJE1Kk4q-vQruTufAh9CUkohSks_321MRMcLiKGY5Z3zRQwFNeBImeXYZoKFzd0IYz7I0QMdDp70KNTxA48oaD0-PJQjftYBl55Q1WNoWO6iF8ar6zK0G44X_ipV4uS9wY5XxuNK2u45RXwrtYPLrCM026_NqFyoAKJtW1aJ9lZTQNM15Ev_hN7U3PmE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-level context feature fusion for semantic segmentation of ALS point cloud</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Tao ; Luo, Fulin ; Guo, Tan ; Gong, Xiuwen ; Xue, Jingyun ; Li, Hanshan</creator><creatorcontrib>Zeng, Tao ; Luo, Fulin ; Guo, Tan ; Gong, Xiuwen ; Xue, Jingyun ; Li, Hanshan</creatorcontrib><description>Semantic segmentation of airborne laser scanning (ALS) point clouds using deep learning is a hot research in remote sensing and photogrammetry. A current trend is to aggregate contextual features from different scales for boosting network generalization and diversity discrimination capabilities. One main challenge is how to achieve effective fusion with multiscale information. In this letter, we propose a muti-level context feature fusion network (MCFN) for semantic segmentation of ALS point cloud based on an encoder-decoder structure. More specifically, we design the squeeze-expansion shared MLP module (SE-MLP) following kernel point convolution (KPConv) in the encoding stage, which can extend the receptive field of KPConv. To aggregate low-level features and high-level representations, we establish channel self-attention between skip connections. In the decoding stage, we develop a cross-layer attention fusion module (CAF) to generate additional discriminative channel features by fusing multi-scale features at different upsampling layers. Experiments on the ISPRS and LASDU datasets demonstrate the superiority of the proposed method. Code: https://github.com/SC-shendazt/MCFN.</description><identifier>ISSN: 1545-598X</identifier><identifier>DOI: 10.1109/LGRS.2023.3294246</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; attention mechanism ; Convolution ; Decoding ; encoder-decoder structure ; Feature extraction ; Kernel ; kernel point convolution ; multi-level fusion ; Point cloud compression ; Point cloud semantic segmentation ; Semantics</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-07, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1078-1571 ; 0000-0001-9523-8094 ; 0000-0002-7696-0775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10177945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10177945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Luo, Fulin</creatorcontrib><creatorcontrib>Guo, Tan</creatorcontrib><creatorcontrib>Gong, Xiuwen</creatorcontrib><creatorcontrib>Xue, Jingyun</creatorcontrib><creatorcontrib>Li, Hanshan</creatorcontrib><title>Multi-level context feature fusion for semantic segmentation of ALS point cloud</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Semantic segmentation of airborne laser scanning (ALS) point clouds using deep learning is a hot research in remote sensing and photogrammetry. A current trend is to aggregate contextual features from different scales for boosting network generalization and diversity discrimination capabilities. One main challenge is how to achieve effective fusion with multiscale information. In this letter, we propose a muti-level context feature fusion network (MCFN) for semantic segmentation of ALS point cloud based on an encoder-decoder structure. More specifically, we design the squeeze-expansion shared MLP module (SE-MLP) following kernel point convolution (KPConv) in the encoding stage, which can extend the receptive field of KPConv. To aggregate low-level features and high-level representations, we establish channel self-attention between skip connections. In the decoding stage, we develop a cross-layer attention fusion module (CAF) to generate additional discriminative channel features by fusing multi-scale features at different upsampling layers. Experiments on the ISPRS and LASDU datasets demonstrate the superiority of the proposed method. Code: https://github.com/SC-shendazt/MCFN.</description><subject>Aggregates</subject><subject>attention mechanism</subject><subject>Convolution</subject><subject>Decoding</subject><subject>encoder-decoder structure</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>kernel point convolution</subject><subject>multi-level fusion</subject><subject>Point cloud compression</subject><subject>Point cloud semantic segmentation</subject><subject>Semantics</subject><issn>1545-598X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFybsKwjAYQOEMCtbLAwgOeYHWJE1tO4p4GRTBOriVUP9IJE1Kk4q-vQruTufAh9CUkohSks_321MRMcLiKGY5Z3zRQwFNeBImeXYZoKFzd0IYz7I0QMdDp70KNTxA48oaD0-PJQjftYBl55Q1WNoWO6iF8ar6zK0G44X_ipV4uS9wY5XxuNK2u45RXwrtYPLrCM026_NqFyoAKJtW1aJ9lZTQNM15Ev_hN7U3PmE</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Zeng, Tao</creator><creator>Luo, Fulin</creator><creator>Guo, Tan</creator><creator>Gong, Xiuwen</creator><creator>Xue, Jingyun</creator><creator>Li, Hanshan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-1078-1571</orcidid><orcidid>https://orcid.org/0000-0001-9523-8094</orcidid><orcidid>https://orcid.org/0000-0002-7696-0775</orcidid></search><sort><creationdate>20230710</creationdate><title>Multi-level context feature fusion for semantic segmentation of ALS point cloud</title><author>Zeng, Tao ; Luo, Fulin ; Guo, Tan ; Gong, Xiuwen ; Xue, Jingyun ; Li, Hanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_101779453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aggregates</topic><topic>attention mechanism</topic><topic>Convolution</topic><topic>Decoding</topic><topic>encoder-decoder structure</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>kernel point convolution</topic><topic>multi-level fusion</topic><topic>Point cloud compression</topic><topic>Point cloud semantic segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Luo, Fulin</creatorcontrib><creatorcontrib>Guo, Tan</creatorcontrib><creatorcontrib>Gong, Xiuwen</creatorcontrib><creatorcontrib>Xue, Jingyun</creatorcontrib><creatorcontrib>Li, Hanshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Tao</au><au>Luo, Fulin</au><au>Guo, Tan</au><au>Gong, Xiuwen</au><au>Xue, Jingyun</au><au>Li, Hanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-level context feature fusion for semantic segmentation of ALS point cloud</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-07-10</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><coden>IGRSBY</coden><abstract>Semantic segmentation of airborne laser scanning (ALS) point clouds using deep learning is a hot research in remote sensing and photogrammetry. A current trend is to aggregate contextual features from different scales for boosting network generalization and diversity discrimination capabilities. One main challenge is how to achieve effective fusion with multiscale information. In this letter, we propose a muti-level context feature fusion network (MCFN) for semantic segmentation of ALS point cloud based on an encoder-decoder structure. More specifically, we design the squeeze-expansion shared MLP module (SE-MLP) following kernel point convolution (KPConv) in the encoding stage, which can extend the receptive field of KPConv. To aggregate low-level features and high-level representations, we establish channel self-attention between skip connections. In the decoding stage, we develop a cross-layer attention fusion module (CAF) to generate additional discriminative channel features by fusing multi-scale features at different upsampling layers. Experiments on the ISPRS and LASDU datasets demonstrate the superiority of the proposed method. Code: https://github.com/SC-shendazt/MCFN.</abstract><pub>IEEE</pub><doi>10.1109/LGRS.2023.3294246</doi><orcidid>https://orcid.org/0000-0002-1078-1571</orcidid><orcidid>https://orcid.org/0000-0001-9523-8094</orcidid><orcidid>https://orcid.org/0000-0002-7696-0775</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023-07, p.1-1
issn 1545-598X
language eng
recordid cdi_ieee_primary_10177945
source IEEE Electronic Library (IEL)
subjects Aggregates
attention mechanism
Convolution
Decoding
encoder-decoder structure
Feature extraction
Kernel
kernel point convolution
multi-level fusion
Point cloud compression
Point cloud semantic segmentation
Semantics
title Multi-level context feature fusion for semantic segmentation of ALS point cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-level%20context%20feature%20fusion%20for%20semantic%20segmentation%20of%20ALS%20point%20cloud&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zeng,%20Tao&rft.date=2023-07-10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3294246&rft_dat=%3Cieee_RIE%3E10177945%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10177945&rfr_iscdi=true