PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways
The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges fo...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-01, Vol.11 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Zhang, Chen Lian, Zhuotao Huang, Huakun Su, Chunhua |
description | The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%. |
doi_str_mv | 10.1109/JIOT.2023.3289206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10176268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10176268</ieee_id><sourcerecordid>2906592059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOY-gOBDwOfO_GnTxjftdFYGG24-hyy9hYytnUmK9Nvbuj3s6R4459x7-SF0T8mUUiKfPovlZsoI41POMsmIuEIjxlkaxUKw6wt9iybe7wghfS2hUozQ1yovZutnvAJ3sN7bpsa6LnHuoLRbu7ehi161hxIXdXDtvz-DACYMat35AAdsa1w0GzzXAX515-_QTaX3HibnOUbf72-b_CNaLOdF_rKIDJNxiLRhnFegWVxpQ-I47n_KklITSYg0WwpJ76TSJJwJU-pMxEnJDSU6LXlVZSkfo8fT3qNrflrwQe2a1tX9ScUkEUkPIpF9ip5SxjXeO6jU0dmDdp2iRA301EBPDfTUmV7feTh1LABc5GkqmMj4H2sUahA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906592059</pqid></control><display><type>article</type><title>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Chen ; Lian, Zhuotao ; Huang, Huakun ; Su, Chunhua</creator><creatorcontrib>Zhang, Chen ; Lian, Zhuotao ; Huang, Huakun ; Su, Chunhua</creatorcontrib><description>The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3289206</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Credibility ; Cybersecurity ; Decision trees ; Denial of service attacks ; Devices ; Flow characteristics ; Importance ratio ; Internet of Things ; Intrusion detection systems ; IoT gateway ; PCIDS1 ; PCIDS2 ; Permission ; Risk assessment ; Supervised learning</subject><ispartof>IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</citedby><cites>FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</cites><orcidid>0000-0003-2938-6368 ; 0000-0002-8878-0560 ; 0000-0003-2853-8892 ; 0000-0002-6461-9684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10176268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10176268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Lian, Zhuotao</creatorcontrib><creatorcontrib>Huang, Huakun</creatorcontrib><creatorcontrib>Su, Chunhua</creatorcontrib><title>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%.</description><subject>Credibility</subject><subject>Cybersecurity</subject><subject>Decision trees</subject><subject>Denial of service attacks</subject><subject>Devices</subject><subject>Flow characteristics</subject><subject>Importance ratio</subject><subject>Internet of Things</subject><subject>Intrusion detection systems</subject><subject>IoT gateway</subject><subject>PCIDS1</subject><subject>PCIDS2</subject><subject>Permission</subject><subject>Risk assessment</subject><subject>Supervised learning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOOY-gOBDwOfO_GnTxjftdFYGG24-hyy9hYytnUmK9Nvbuj3s6R4459x7-SF0T8mUUiKfPovlZsoI41POMsmIuEIjxlkaxUKw6wt9iybe7wghfS2hUozQ1yovZutnvAJ3sN7bpsa6LnHuoLRbu7ehi161hxIXdXDtvz-DACYMat35AAdsa1w0GzzXAX515-_QTaX3HibnOUbf72-b_CNaLOdF_rKIDJNxiLRhnFegWVxpQ-I47n_KklITSYg0WwpJ76TSJJwJU-pMxEnJDSU6LXlVZSkfo8fT3qNrflrwQe2a1tX9ScUkEUkPIpF9ip5SxjXeO6jU0dmDdp2iRA301EBPDfTUmV7feTh1LABc5GkqmMj4H2sUahA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhang, Chen</creator><creator>Lian, Zhuotao</creator><creator>Huang, Huakun</creator><creator>Su, Chunhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2938-6368</orcidid><orcidid>https://orcid.org/0000-0002-8878-0560</orcidid><orcidid>https://orcid.org/0000-0003-2853-8892</orcidid><orcidid>https://orcid.org/0000-0002-6461-9684</orcidid></search><sort><creationdate>20240101</creationdate><title>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</title><author>Zhang, Chen ; Lian, Zhuotao ; Huang, Huakun ; Su, Chunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Credibility</topic><topic>Cybersecurity</topic><topic>Decision trees</topic><topic>Denial of service attacks</topic><topic>Devices</topic><topic>Flow characteristics</topic><topic>Importance ratio</topic><topic>Internet of Things</topic><topic>Intrusion detection systems</topic><topic>IoT gateway</topic><topic>PCIDS1</topic><topic>PCIDS2</topic><topic>Permission</topic><topic>Risk assessment</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Lian, Zhuotao</creatorcontrib><creatorcontrib>Huang, Huakun</creatorcontrib><creatorcontrib>Su, Chunhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Chen</au><au>Lian, Zhuotao</au><au>Huang, Huakun</au><au>Su, Chunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3289206</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2938-6368</orcidid><orcidid>https://orcid.org/0000-0002-8878-0560</orcidid><orcidid>https://orcid.org/0000-0003-2853-8892</orcidid><orcidid>https://orcid.org/0000-0002-6461-9684</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10176268 |
source | IEEE Electronic Library (IEL) |
subjects | Credibility Cybersecurity Decision trees Denial of service attacks Devices Flow characteristics Importance ratio Internet of Things Intrusion detection systems IoT gateway PCIDS1 PCIDS2 Permission Risk assessment Supervised learning |
title | PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCIDS:%20Permission%20and%20Credibility-Based%20Intrusion%20Detection%20System%20in%20IoT%20Gateways&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Chen&rft.date=2024-01-01&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3289206&rft_dat=%3Cproquest_RIE%3E2906592059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906592059&rft_id=info:pmid/&rft_ieee_id=10176268&rfr_iscdi=true |