PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways

The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-01, Vol.11 (1), p.1-1
Hauptverfasser: Zhang, Chen, Lian, Zhuotao, Huang, Huakun, Su, Chunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE internet of things journal
container_volume 11
creator Zhang, Chen
Lian, Zhuotao
Huang, Huakun
Su, Chunhua
description The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%.
doi_str_mv 10.1109/JIOT.2023.3289206
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10176268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10176268</ieee_id><sourcerecordid>2906592059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOY-gOBDwOfO_GnTxjftdFYGG24-hyy9hYytnUmK9Nvbuj3s6R4459x7-SF0T8mUUiKfPovlZsoI41POMsmIuEIjxlkaxUKw6wt9iybe7wghfS2hUozQ1yovZutnvAJ3sN7bpsa6LnHuoLRbu7ehi161hxIXdXDtvz-DACYMat35AAdsa1w0GzzXAX515-_QTaX3HibnOUbf72-b_CNaLOdF_rKIDJNxiLRhnFegWVxpQ-I47n_KklITSYg0WwpJ76TSJJwJU-pMxEnJDSU6LXlVZSkfo8fT3qNrflrwQe2a1tX9ScUkEUkPIpF9ip5SxjXeO6jU0dmDdp2iRA301EBPDfTUmV7feTh1LABc5GkqmMj4H2sUahA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906592059</pqid></control><display><type>article</type><title>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Chen ; Lian, Zhuotao ; Huang, Huakun ; Su, Chunhua</creator><creatorcontrib>Zhang, Chen ; Lian, Zhuotao ; Huang, Huakun ; Su, Chunhua</creatorcontrib><description>The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3289206</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Credibility ; Cybersecurity ; Decision trees ; Denial of service attacks ; Devices ; Flow characteristics ; Importance ratio ; Internet of Things ; Intrusion detection systems ; IoT gateway ; PCIDS1 ; PCIDS2 ; Permission ; Risk assessment ; Supervised learning</subject><ispartof>IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</citedby><cites>FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</cites><orcidid>0000-0003-2938-6368 ; 0000-0002-8878-0560 ; 0000-0003-2853-8892 ; 0000-0002-6461-9684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10176268$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10176268$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Lian, Zhuotao</creatorcontrib><creatorcontrib>Huang, Huakun</creatorcontrib><creatorcontrib>Su, Chunhua</creatorcontrib><title>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%.</description><subject>Credibility</subject><subject>Cybersecurity</subject><subject>Decision trees</subject><subject>Denial of service attacks</subject><subject>Devices</subject><subject>Flow characteristics</subject><subject>Importance ratio</subject><subject>Internet of Things</subject><subject>Intrusion detection systems</subject><subject>IoT gateway</subject><subject>PCIDS1</subject><subject>PCIDS2</subject><subject>Permission</subject><subject>Risk assessment</subject><subject>Supervised learning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOOY-gOBDwOfO_GnTxjftdFYGG24-hyy9hYytnUmK9Nvbuj3s6R4459x7-SF0T8mUUiKfPovlZsoI41POMsmIuEIjxlkaxUKw6wt9iybe7wghfS2hUozQ1yovZutnvAJ3sN7bpsa6LnHuoLRbu7ehi161hxIXdXDtvz-DACYMat35AAdsa1w0GzzXAX515-_QTaX3HibnOUbf72-b_CNaLOdF_rKIDJNxiLRhnFegWVxpQ-I47n_KklITSYg0WwpJ76TSJJwJU-pMxEnJDSU6LXlVZSkfo8fT3qNrflrwQe2a1tX9ScUkEUkPIpF9ip5SxjXeO6jU0dmDdp2iRA301EBPDfTUmV7feTh1LABc5GkqmMj4H2sUahA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zhang, Chen</creator><creator>Lian, Zhuotao</creator><creator>Huang, Huakun</creator><creator>Su, Chunhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2938-6368</orcidid><orcidid>https://orcid.org/0000-0002-8878-0560</orcidid><orcidid>https://orcid.org/0000-0003-2853-8892</orcidid><orcidid>https://orcid.org/0000-0002-6461-9684</orcidid></search><sort><creationdate>20240101</creationdate><title>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</title><author>Zhang, Chen ; Lian, Zhuotao ; Huang, Huakun ; Su, Chunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-ac233fea24fac044411085da09009cb1e524f79c5326cda8645d3c10a7d3ff873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Credibility</topic><topic>Cybersecurity</topic><topic>Decision trees</topic><topic>Denial of service attacks</topic><topic>Devices</topic><topic>Flow characteristics</topic><topic>Importance ratio</topic><topic>Internet of Things</topic><topic>Intrusion detection systems</topic><topic>IoT gateway</topic><topic>PCIDS1</topic><topic>PCIDS2</topic><topic>Permission</topic><topic>Risk assessment</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Lian, Zhuotao</creatorcontrib><creatorcontrib>Huang, Huakun</creatorcontrib><creatorcontrib>Su, Chunhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Chen</au><au>Lian, Zhuotao</au><au>Huang, Huakun</au><au>Su, Chunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>The Internet of Things (IoT) has evolved into a global platform dramatically facilitating human life through intelligent services. It is straightforward for people to access smart devices through IoT. However, the easy accessibility of IoT devices has also led to unprecedented security challenges for the IoT. To ensure the security of the basic structure of IoT, we need to establish a security barrier that can filter malicious access to IoT devices and achieve the integration of intrusion detection systems (IDS) with intelligent gateways. This paper establishes threat models of DoS, Replay, MITM, and Loophole attacks based on statistical flow characteristics and identity authentication. It uses supervised learning to obtain the credibility index to protect the IoT system. We use the Django framework to verify identity authorization information, the decision tree to determine request attributes, and the real-time status feedback from IoT devices to perform a risk assessment on the current user by pre-calculating the Importance ratio (Ir), the maximum credibility index (Pmax) and the minimum credibility index (Pmin). With administrator verification, we conduct a convergence analysis to obtain user attributes. The experimental results show that our approach achieves a recognition accuracy of 94.7%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3289206</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2938-6368</orcidid><orcidid>https://orcid.org/0000-0002-8878-0560</orcidid><orcidid>https://orcid.org/0000-0003-2853-8892</orcidid><orcidid>https://orcid.org/0000-0002-6461-9684</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-01, Vol.11 (1), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10176268
source IEEE Electronic Library (IEL)
subjects Credibility
Cybersecurity
Decision trees
Denial of service attacks
Devices
Flow characteristics
Importance ratio
Internet of Things
Intrusion detection systems
IoT gateway
PCIDS1
PCIDS2
Permission
Risk assessment
Supervised learning
title PCIDS: Permission and Credibility-Based Intrusion Detection System in IoT Gateways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCIDS:%20Permission%20and%20Credibility-Based%20Intrusion%20Detection%20System%20in%20IoT%20Gateways&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Chen&rft.date=2024-01-01&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3289206&rft_dat=%3Cproquest_RIE%3E2906592059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906592059&rft_id=info:pmid/&rft_ieee_id=10176268&rfr_iscdi=true