Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms

Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hairong Qi, Head, J.F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2869 vol.3
container_issue
container_start_page 2866
container_title
container_volume 3
creator Hairong Qi
Head, J.F.
description Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center.
doi_str_mv 10.1109/IEMBS.2001.1017386
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1017386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1017386</ieee_id><sourcerecordid>1017386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696-cbf9231e0d8090e4844289df21225d7bdb599743ee73d65d4c6d3f2b49b5fdad3</originalsourceid><addsrcrecordid>eNotUMlOwzAUtFgkqpIfgIt_IMX7cixVgUpFHOiBW-XYL8WoTpCdHvL3RLRPI81oZjSHh9ADJQtKiX3arN-fPxeMELqghGpu1BWaUSlNLRSV16iy2pAJXDNK5c2UEStqZfTXHapK-SHTcSu4ZTOUlmVMCYY8Yte541hiwacSuwN2p6FPbogeFzgk6IZJ993UCtgfXSmxjf5stX3GTQZXBuxd5yHjAAP4_yx2ePiGnPpDdqnco9vWHQtUF56j3ct6t3qrtx-vm9VyW3tlVe2b1jJOgQRDLAFhhGDGhpZRxmTQTWiktVpwAM2DkkF4FXjLGmEb2QYX-Bw9nmcjAOx_c0wuj_vLr_gfAPJeZQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hairong Qi ; Head, J.F.</creator><creatorcontrib>Hairong Qi ; Head, J.F.</creatorcontrib><description>Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9780780372115</identifier><identifier>ISBN: 0780372115</identifier><identifier>EISSN: 1558-4615</identifier><identifier>DOI: 10.1109/IEMBS.2001.1017386</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; Cancer detection ; Feature extraction ; Humans ; Image segmentation ; Infrared detectors ; Infrared imaging ; Interference ; Mammography ; Pattern classification</subject><ispartof>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.3, p.2866-2869 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696-cbf9231e0d8090e4844289df21225d7bdb599743ee73d65d4c6d3f2b49b5fdad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1017386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1017386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hairong Qi</creatorcontrib><creatorcontrib>Head, J.F.</creatorcontrib><title>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</title><title>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center.</description><subject>Breast cancer</subject><subject>Cancer detection</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Infrared detectors</subject><subject>Infrared imaging</subject><subject>Interference</subject><subject>Mammography</subject><subject>Pattern classification</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>9780780372115</isbn><isbn>0780372115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMlOwzAUtFgkqpIfgIt_IMX7cixVgUpFHOiBW-XYL8WoTpCdHvL3RLRPI81oZjSHh9ADJQtKiX3arN-fPxeMELqghGpu1BWaUSlNLRSV16iy2pAJXDNK5c2UEStqZfTXHapK-SHTcSu4ZTOUlmVMCYY8Yte541hiwacSuwN2p6FPbogeFzgk6IZJ993UCtgfXSmxjf5stX3GTQZXBuxd5yHjAAP4_yx2ePiGnPpDdqnco9vWHQtUF56j3ct6t3qrtx-vm9VyW3tlVe2b1jJOgQRDLAFhhGDGhpZRxmTQTWiktVpwAM2DkkF4FXjLGmEb2QYX-Bw9nmcjAOx_c0wuj_vLr_gfAPJeZQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Hairong Qi</creator><creator>Head, J.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</title><author>Hairong Qi ; Head, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696-cbf9231e0d8090e4844289df21225d7bdb599743ee73d65d4c6d3f2b49b5fdad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Breast cancer</topic><topic>Cancer detection</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Infrared detectors</topic><topic>Infrared imaging</topic><topic>Interference</topic><topic>Mammography</topic><topic>Pattern classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Hairong Qi</creatorcontrib><creatorcontrib>Head, J.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hairong Qi</au><au>Head, J.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</atitle><btitle>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2001</date><risdate>2001</risdate><volume>3</volume><spage>2866</spage><epage>2869 vol.3</epage><pages>2866-2869 vol.3</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>9780780372115</isbn><isbn>0780372115</isbn><abstract>Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center.</abstract><pub>IEEE</pub><doi>10.1109/IEMBS.2001.1017386</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.3, p.2866-2869 vol.3
issn 1094-687X
1558-4615
language eng
recordid cdi_ieee_primary_1017386
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Breast cancer
Cancer detection
Feature extraction
Humans
Image segmentation
Infrared detectors
Infrared imaging
Interference
Mammography
Pattern classification
title Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Asymmetry%20analysis%20using%20automatic%20segmentation%20and%20classification%20for%20breast%20cancer%20detection%20in%20thermograms&rft.btitle=2001%20Conference%20Proceedings%20of%20the%2023rd%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Hairong%20Qi&rft.date=2001&rft.volume=3&rft.spage=2866&rft.epage=2869%20vol.3&rft.pages=2866-2869%20vol.3&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9780780372115&rft.isbn_list=0780372115&rft_id=info:doi/10.1109/IEMBS.2001.1017386&rft_dat=%3Cieee_6IE%3E1017386%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1017386&rfr_iscdi=true