Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms
Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interf...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2869 vol.3 |
---|---|
container_issue | |
container_start_page | 2866 |
container_title | |
container_volume | 3 |
creator | Hairong Qi Head, J.F. |
description | Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center. |
doi_str_mv | 10.1109/IEMBS.2001.1017386 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1017386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1017386</ieee_id><sourcerecordid>1017386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696-cbf9231e0d8090e4844289df21225d7bdb599743ee73d65d4c6d3f2b49b5fdad3</originalsourceid><addsrcrecordid>eNotUMlOwzAUtFgkqpIfgIt_IMX7cixVgUpFHOiBW-XYL8WoTpCdHvL3RLRPI81oZjSHh9ADJQtKiX3arN-fPxeMELqghGpu1BWaUSlNLRSV16iy2pAJXDNK5c2UEStqZfTXHapK-SHTcSu4ZTOUlmVMCYY8Yte541hiwacSuwN2p6FPbogeFzgk6IZJ993UCtgfXSmxjf5stX3GTQZXBuxd5yHjAAP4_yx2ePiGnPpDdqnco9vWHQtUF56j3ct6t3qrtx-vm9VyW3tlVe2b1jJOgQRDLAFhhGDGhpZRxmTQTWiktVpwAM2DkkF4FXjLGmEb2QYX-Bw9nmcjAOx_c0wuj_vLr_gfAPJeZQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hairong Qi ; Head, J.F.</creator><creatorcontrib>Hairong Qi ; Head, J.F.</creatorcontrib><description>Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9780780372115</identifier><identifier>ISBN: 0780372115</identifier><identifier>EISSN: 1558-4615</identifier><identifier>DOI: 10.1109/IEMBS.2001.1017386</identifier><language>eng</language><publisher>IEEE</publisher><subject>Breast cancer ; Cancer detection ; Feature extraction ; Humans ; Image segmentation ; Infrared detectors ; Infrared imaging ; Interference ; Mammography ; Pattern classification</subject><ispartof>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.3, p.2866-2869 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696-cbf9231e0d8090e4844289df21225d7bdb599743ee73d65d4c6d3f2b49b5fdad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1017386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1017386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hairong Qi</creatorcontrib><creatorcontrib>Head, J.F.</creatorcontrib><title>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</title><title>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center.</description><subject>Breast cancer</subject><subject>Cancer detection</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image segmentation</subject><subject>Infrared detectors</subject><subject>Infrared imaging</subject><subject>Interference</subject><subject>Mammography</subject><subject>Pattern classification</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>9780780372115</isbn><isbn>0780372115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUMlOwzAUtFgkqpIfgIt_IMX7cixVgUpFHOiBW-XYL8WoTpCdHvL3RLRPI81oZjSHh9ADJQtKiX3arN-fPxeMELqghGpu1BWaUSlNLRSV16iy2pAJXDNK5c2UEStqZfTXHapK-SHTcSu4ZTOUlmVMCYY8Yte541hiwacSuwN2p6FPbogeFzgk6IZJ993UCtgfXSmxjf5stX3GTQZXBuxd5yHjAAP4_yx2ePiGnPpDdqnco9vWHQtUF56j3ct6t3qrtx-vm9VyW3tlVe2b1jJOgQRDLAFhhGDGhpZRxmTQTWiktVpwAM2DkkF4FXjLGmEb2QYX-Bw9nmcjAOx_c0wuj_vLr_gfAPJeZQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Hairong Qi</creator><creator>Head, J.F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</title><author>Hairong Qi ; Head, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696-cbf9231e0d8090e4844289df21225d7bdb599743ee73d65d4c6d3f2b49b5fdad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Breast cancer</topic><topic>Cancer detection</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image segmentation</topic><topic>Infrared detectors</topic><topic>Infrared imaging</topic><topic>Interference</topic><topic>Mammography</topic><topic>Pattern classification</topic><toplevel>online_resources</toplevel><creatorcontrib>Hairong Qi</creatorcontrib><creatorcontrib>Head, J.F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hairong Qi</au><au>Head, J.F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms</atitle><btitle>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2001</date><risdate>2001</risdate><volume>3</volume><spage>2866</spage><epage>2869 vol.3</epage><pages>2866-2869 vol.3</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>9780780372115</isbn><isbn>0780372115</isbn><abstract>Thermal infrared imaging has shown effective results as a diagnostic tool in breast cancer detection. It can be used as a complementary to traditional mammography. Asymmetry analysis are usually used to help detect abnormalities. However, in infrared imaging, this cannot be done without human interference. This paper proposes an automatic approach to asymmetry analysis in thermograms. It includes automatic segmentation and pattern classification. Hough transform is used to extract the four feature curves that can uniquely segment the left and right breasts. The feature curves include the left and the right body boundary curves, and the two parabolic curves indicating the lower boundaries of the breasts. Upon segmentation, unsupervised learning technique is applied to classify each segmented pixel into certain number of clusters. Asymmetric abnormalities can then be identified based on pixel distribution within the same cluster. Both segmentation and classification results are shown on images captured from Elliott Mastology Center.</abstract><pub>IEEE</pub><doi>10.1109/IEMBS.2001.1017386</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.3, p.2866-2869 vol.3 |
issn | 1094-687X 1558-4615 |
language | eng |
recordid | cdi_ieee_primary_1017386 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Breast cancer Cancer detection Feature extraction Humans Image segmentation Infrared detectors Infrared imaging Interference Mammography Pattern classification |
title | Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Asymmetry%20analysis%20using%20automatic%20segmentation%20and%20classification%20for%20breast%20cancer%20detection%20in%20thermograms&rft.btitle=2001%20Conference%20Proceedings%20of%20the%2023rd%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Hairong%20Qi&rft.date=2001&rft.volume=3&rft.spage=2866&rft.epage=2869%20vol.3&rft.pages=2866-2869%20vol.3&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9780780372115&rft.isbn_list=0780372115&rft_id=info:doi/10.1109/IEMBS.2001.1017386&rft_dat=%3Cieee_6IE%3E1017386%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1017386&rfr_iscdi=true |