A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application
This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2024-02, Vol.59 (2), p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE journal of solid-state circuits |
container_volume | 59 |
creator | Lv, Guansheng Chen, Wenhua Chen, Long Ghannouchi, Fadhel M. Feng, Zhenghe |
description | This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50- \Omega impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a \uplambda /4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15- \mu m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 \times 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of - 32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm. |
doi_str_mv | 10.1109/JSSC.2023.3288390 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10172174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10172174</ieee_id><sourcerecordid>2920421091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4270bc0ae419bd874fcad9cab46b9c248b324940f9f25e5a50e9d0b3a6404a223</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Jx18rHdzbGUfiitClXsLWSzSZtSN2t2e6i_3i3twdMw8LzvMA9C9xQSSkE-vSyXo4QB4wlnec4lXKAeTdOc0IyvLlEPgOZEMoBrdNM0224VIqc9tBpikUiSJZRMZ7945tcbMnbOG28rc8DvoWnJQrdm46s1nupXPImhasm4KvEilPudxS5E_OXJxOMMD-t6541ufahu0ZXTu8benWcffU7GH6MZmb9Nn0fDOTFMDFoiWAaFAW0FlUWZZ8IZXUqjCzEoZIfkBWdCCnDSsdSmOgUrSyi4HggQmjHeR4-n3jqGn71tWrUN-1h1JxXr_hWss0M7ip4oE0PTROtUHf23jgdFQR0FqqNAdRSozgK7zMMp4621_3iaMZoJ_gd1kmjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920421091</pqid></control><display><type>article</type><title>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</title><source>IEEE Electronic Library (IEL)</source><creator>Lv, Guansheng ; Chen, Wenhua ; Chen, Long ; Ghannouchi, Fadhel M. ; Feng, Zhenghe</creator><creatorcontrib>Lv, Guansheng ; Chen, Wenhua ; Chen, Long ; Ghannouchi, Fadhel M. ; Feng, Zhenghe</creatorcontrib><description><![CDATA[This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula> impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a <inline-formula> <tex-math notation="LaTeX">\uplambda</tex-math> </inline-formula>/4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3288390</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Chokes (restrictions) ; Compact ; Efficiency ; Error analysis ; Finite element analysis ; front-end module (FEM) ; gallium nitride (GaN) ; Gallium nitrides ; high efficiency ; High electron mobility transistors ; Impedance ; Impedance matching ; Inductors ; Insertion loss ; low-noise amplifier (LNA) ; Matching ; Modules ; monolithic microwave integrated circuit (MMIC) ; Noise levels ; post-matching (PM) ; power amplifier (PA) ; Power amplifiers ; Semiconductor devices ; Switches ; Switching circuits ; Third order intercept point ; Transistors ; Transmission lines ; transmit/receive (T/R) switch ; Wi-Fi 7</subject><ispartof>IEEE journal of solid-state circuits, 2024-02, Vol.59 (2), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9542-8709 ; 0000-0001-6788-1656 ; 0000-0002-4679-9722 ; 0000-0002-7318-4045 ; 0000-0003-3015-6201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10172174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10172174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, Guansheng</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ghannouchi, Fadhel M.</creatorcontrib><creatorcontrib>Feng, Zhenghe</creatorcontrib><title>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula> impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a <inline-formula> <tex-math notation="LaTeX">\uplambda</tex-math> </inline-formula>/4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm.]]></description><subject>Capacitance</subject><subject>Chokes (restrictions)</subject><subject>Compact</subject><subject>Efficiency</subject><subject>Error analysis</subject><subject>Finite element analysis</subject><subject>front-end module (FEM)</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>high efficiency</subject><subject>High electron mobility transistors</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Inductors</subject><subject>Insertion loss</subject><subject>low-noise amplifier (LNA)</subject><subject>Matching</subject><subject>Modules</subject><subject>monolithic microwave integrated circuit (MMIC)</subject><subject>Noise levels</subject><subject>post-matching (PM)</subject><subject>power amplifier (PA)</subject><subject>Power amplifiers</subject><subject>Semiconductor devices</subject><subject>Switches</subject><subject>Switching circuits</subject><subject>Third order intercept point</subject><subject>Transistors</subject><subject>Transmission lines</subject><subject>transmit/receive (T/R) switch</subject><subject>Wi-Fi 7</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Jx18rHdzbGUfiitClXsLWSzSZtSN2t2e6i_3i3twdMw8LzvMA9C9xQSSkE-vSyXo4QB4wlnec4lXKAeTdOc0IyvLlEPgOZEMoBrdNM0224VIqc9tBpikUiSJZRMZ7945tcbMnbOG28rc8DvoWnJQrdm46s1nupXPImhasm4KvEilPudxS5E_OXJxOMMD-t6541ufahu0ZXTu8benWcffU7GH6MZmb9Nn0fDOTFMDFoiWAaFAW0FlUWZZ8IZXUqjCzEoZIfkBWdCCnDSsdSmOgUrSyi4HggQmjHeR4-n3jqGn71tWrUN-1h1JxXr_hWss0M7ip4oE0PTROtUHf23jgdFQR0FqqNAdRSozgK7zMMp4621_3iaMZoJ_gd1kmjc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lv, Guansheng</creator><creator>Chen, Wenhua</creator><creator>Chen, Long</creator><creator>Ghannouchi, Fadhel M.</creator><creator>Feng, Zhenghe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9542-8709</orcidid><orcidid>https://orcid.org/0000-0001-6788-1656</orcidid><orcidid>https://orcid.org/0000-0002-4679-9722</orcidid><orcidid>https://orcid.org/0000-0002-7318-4045</orcidid><orcidid>https://orcid.org/0000-0003-3015-6201</orcidid></search><sort><creationdate>20240201</creationdate><title>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</title><author>Lv, Guansheng ; Chen, Wenhua ; Chen, Long ; Ghannouchi, Fadhel M. ; Feng, Zhenghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4270bc0ae419bd874fcad9cab46b9c248b324940f9f25e5a50e9d0b3a6404a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Chokes (restrictions)</topic><topic>Compact</topic><topic>Efficiency</topic><topic>Error analysis</topic><topic>Finite element analysis</topic><topic>front-end module (FEM)</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>high efficiency</topic><topic>High electron mobility transistors</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Inductors</topic><topic>Insertion loss</topic><topic>low-noise amplifier (LNA)</topic><topic>Matching</topic><topic>Modules</topic><topic>monolithic microwave integrated circuit (MMIC)</topic><topic>Noise levels</topic><topic>post-matching (PM)</topic><topic>power amplifier (PA)</topic><topic>Power amplifiers</topic><topic>Semiconductor devices</topic><topic>Switches</topic><topic>Switching circuits</topic><topic>Third order intercept point</topic><topic>Transistors</topic><topic>Transmission lines</topic><topic>transmit/receive (T/R) switch</topic><topic>Wi-Fi 7</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Guansheng</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ghannouchi, Fadhel M.</creatorcontrib><creatorcontrib>Feng, Zhenghe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Guansheng</au><au>Chen, Wenhua</au><au>Chen, Long</au><au>Ghannouchi, Fadhel M.</au><au>Feng, Zhenghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>59</volume><issue>2</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula> impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a <inline-formula> <tex-math notation="LaTeX">\uplambda</tex-math> </inline-formula>/4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3288390</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9542-8709</orcidid><orcidid>https://orcid.org/0000-0001-6788-1656</orcidid><orcidid>https://orcid.org/0000-0002-4679-9722</orcidid><orcidid>https://orcid.org/0000-0002-7318-4045</orcidid><orcidid>https://orcid.org/0000-0003-3015-6201</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2024-02, Vol.59 (2), p.1-14 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_10172174 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitance Chokes (restrictions) Compact Efficiency Error analysis Finite element analysis front-end module (FEM) gallium nitride (GaN) Gallium nitrides high efficiency High electron mobility transistors Impedance Impedance matching Inductors Insertion loss low-noise amplifier (LNA) Matching Modules monolithic microwave integrated circuit (MMIC) Noise levels post-matching (PM) power amplifier (PA) Power amplifiers Semiconductor devices Switches Switching circuits Third order intercept point Transistors Transmission lines transmit/receive (T/R) switch Wi-Fi 7 |
title | A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%204.9-7.1-GHz%20High-Efficiency%20Post-Matching%20GaN%20Front-End%20Module%20for%20Wi-Fi%207%20Application&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Lv,%20Guansheng&rft.date=2024-02-01&rft.volume=59&rft.issue=2&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3288390&rft_dat=%3Cproquest_RIE%3E2920421091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920421091&rft_id=info:pmid/&rft_ieee_id=10172174&rfr_iscdi=true |