A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application

This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2024-02, Vol.59 (2), p.1-14
Hauptverfasser: Lv, Guansheng, Chen, Wenhua, Chen, Long, Ghannouchi, Fadhel M., Feng, Zhenghe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2
container_start_page 1
container_title IEEE journal of solid-state circuits
container_volume 59
creator Lv, Guansheng
Chen, Wenhua
Chen, Long
Ghannouchi, Fadhel M.
Feng, Zhenghe
description This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50- \Omega impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a \uplambda /4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15- \mu m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 \times 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of - 32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm.
doi_str_mv 10.1109/JSSC.2023.3288390
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10172174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10172174</ieee_id><sourcerecordid>2920421091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4270bc0ae419bd874fcad9cab46b9c248b324940f9f25e5a50e9d0b3a6404a223</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Jx18rHdzbGUfiitClXsLWSzSZtSN2t2e6i_3i3twdMw8LzvMA9C9xQSSkE-vSyXo4QB4wlnec4lXKAeTdOc0IyvLlEPgOZEMoBrdNM0224VIqc9tBpikUiSJZRMZ7945tcbMnbOG28rc8DvoWnJQrdm46s1nupXPImhasm4KvEilPudxS5E_OXJxOMMD-t6541ufahu0ZXTu8benWcffU7GH6MZmb9Nn0fDOTFMDFoiWAaFAW0FlUWZZ8IZXUqjCzEoZIfkBWdCCnDSsdSmOgUrSyi4HggQmjHeR4-n3jqGn71tWrUN-1h1JxXr_hWss0M7ip4oE0PTROtUHf23jgdFQR0FqqNAdRSozgK7zMMp4621_3iaMZoJ_gd1kmjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920421091</pqid></control><display><type>article</type><title>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</title><source>IEEE Electronic Library (IEL)</source><creator>Lv, Guansheng ; Chen, Wenhua ; Chen, Long ; Ghannouchi, Fadhel M. ; Feng, Zhenghe</creator><creatorcontrib>Lv, Guansheng ; Chen, Wenhua ; Chen, Long ; Ghannouchi, Fadhel M. ; Feng, Zhenghe</creatorcontrib><description><![CDATA[This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula> impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a <inline-formula> <tex-math notation="LaTeX">\uplambda</tex-math> </inline-formula>/4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3288390</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Chokes (restrictions) ; Compact ; Efficiency ; Error analysis ; Finite element analysis ; front-end module (FEM) ; gallium nitride (GaN) ; Gallium nitrides ; high efficiency ; High electron mobility transistors ; Impedance ; Impedance matching ; Inductors ; Insertion loss ; low-noise amplifier (LNA) ; Matching ; Modules ; monolithic microwave integrated circuit (MMIC) ; Noise levels ; post-matching (PM) ; power amplifier (PA) ; Power amplifiers ; Semiconductor devices ; Switches ; Switching circuits ; Third order intercept point ; Transistors ; Transmission lines ; transmit/receive (T/R) switch ; Wi-Fi 7</subject><ispartof>IEEE journal of solid-state circuits, 2024-02, Vol.59 (2), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9542-8709 ; 0000-0001-6788-1656 ; 0000-0002-4679-9722 ; 0000-0002-7318-4045 ; 0000-0003-3015-6201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10172174$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10172174$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lv, Guansheng</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ghannouchi, Fadhel M.</creatorcontrib><creatorcontrib>Feng, Zhenghe</creatorcontrib><title>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula> impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a <inline-formula> <tex-math notation="LaTeX">\uplambda</tex-math> </inline-formula>/4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm.]]></description><subject>Capacitance</subject><subject>Chokes (restrictions)</subject><subject>Compact</subject><subject>Efficiency</subject><subject>Error analysis</subject><subject>Finite element analysis</subject><subject>front-end module (FEM)</subject><subject>gallium nitride (GaN)</subject><subject>Gallium nitrides</subject><subject>high efficiency</subject><subject>High electron mobility transistors</subject><subject>Impedance</subject><subject>Impedance matching</subject><subject>Inductors</subject><subject>Insertion loss</subject><subject>low-noise amplifier (LNA)</subject><subject>Matching</subject><subject>Modules</subject><subject>monolithic microwave integrated circuit (MMIC)</subject><subject>Noise levels</subject><subject>post-matching (PM)</subject><subject>power amplifier (PA)</subject><subject>Power amplifiers</subject><subject>Semiconductor devices</subject><subject>Switches</subject><subject>Switching circuits</subject><subject>Third order intercept point</subject><subject>Transistors</subject><subject>Transmission lines</subject><subject>transmit/receive (T/R) switch</subject><subject>Wi-Fi 7</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Jx18rHdzbGUfiitClXsLWSzSZtSN2t2e6i_3i3twdMw8LzvMA9C9xQSSkE-vSyXo4QB4wlnec4lXKAeTdOc0IyvLlEPgOZEMoBrdNM0224VIqc9tBpikUiSJZRMZ7945tcbMnbOG28rc8DvoWnJQrdm46s1nupXPImhasm4KvEilPudxS5E_OXJxOMMD-t6541ufahu0ZXTu8benWcffU7GH6MZmb9Nn0fDOTFMDFoiWAaFAW0FlUWZZ8IZXUqjCzEoZIfkBWdCCnDSsdSmOgUrSyi4HggQmjHeR4-n3jqGn71tWrUN-1h1JxXr_hWss0M7ip4oE0PTROtUHf23jgdFQR0FqqNAdRSozgK7zMMp4621_3iaMZoJ_gd1kmjc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lv, Guansheng</creator><creator>Chen, Wenhua</creator><creator>Chen, Long</creator><creator>Ghannouchi, Fadhel M.</creator><creator>Feng, Zhenghe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9542-8709</orcidid><orcidid>https://orcid.org/0000-0001-6788-1656</orcidid><orcidid>https://orcid.org/0000-0002-4679-9722</orcidid><orcidid>https://orcid.org/0000-0002-7318-4045</orcidid><orcidid>https://orcid.org/0000-0003-3015-6201</orcidid></search><sort><creationdate>20240201</creationdate><title>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</title><author>Lv, Guansheng ; Chen, Wenhua ; Chen, Long ; Ghannouchi, Fadhel M. ; Feng, Zhenghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4270bc0ae419bd874fcad9cab46b9c248b324940f9f25e5a50e9d0b3a6404a223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Chokes (restrictions)</topic><topic>Compact</topic><topic>Efficiency</topic><topic>Error analysis</topic><topic>Finite element analysis</topic><topic>front-end module (FEM)</topic><topic>gallium nitride (GaN)</topic><topic>Gallium nitrides</topic><topic>high efficiency</topic><topic>High electron mobility transistors</topic><topic>Impedance</topic><topic>Impedance matching</topic><topic>Inductors</topic><topic>Insertion loss</topic><topic>low-noise amplifier (LNA)</topic><topic>Matching</topic><topic>Modules</topic><topic>monolithic microwave integrated circuit (MMIC)</topic><topic>Noise levels</topic><topic>post-matching (PM)</topic><topic>power amplifier (PA)</topic><topic>Power amplifiers</topic><topic>Semiconductor devices</topic><topic>Switches</topic><topic>Switching circuits</topic><topic>Third order intercept point</topic><topic>Transistors</topic><topic>Transmission lines</topic><topic>transmit/receive (T/R) switch</topic><topic>Wi-Fi 7</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Guansheng</creatorcontrib><creatorcontrib>Chen, Wenhua</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Ghannouchi, Fadhel M.</creatorcontrib><creatorcontrib>Feng, Zhenghe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lv, Guansheng</au><au>Chen, Wenhua</au><au>Chen, Long</au><au>Ghannouchi, Fadhel M.</au><au>Feng, Zhenghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>59</volume><issue>2</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents a modified transmit/receive (T/R) front-end module (FEM) architecture with improved transmitter (TX) efficiency. Single-pole double-throw (SPDT) switch is commonly adopted in conventional FEM for T/R isolation, but its insertion loss (IL) deteriorates TX efficiency greatly. To alleviate this problem, a post-matching (PM) architecture is proposed to eliminate the switch in the TX branch. Specifically, a PM network (PMN) is employed to transform 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math> </inline-formula> impedance at the antenna port into the intrinsic optimal load impedance of the power amplifier (PA), while the output capacitance of the PA is absorbed into a <inline-formula> <tex-math notation="LaTeX">\uplambda</tex-math> </inline-formula>/4-transmission-line (TL)-based single-pole single-throw (SPST) switch in the receiver (RX) branch. The drain voltage of the PA can also be supplied via the SPST, avoiding the use of an additional choke inductor. The theoretical performance of the T/R switch, including bandwidth, IL, and isolation, is analyzed in depth. A 4.9-7.1-GHz FEM for Wi-Fi 7 application is implemented in a commercial 0.15-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m gallium nitride (GaN)-high-electron-mobility transistor (HEMT) process to validate the proposed architecture, and the chip size is only 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1.6 mm. The TX mode realizes a saturated power of 37.1-38.6 dBm and a saturated power-added efficiency (PAE) of 45%-52.4%. With MCS9 EHT160 signals, an average PAE of 18.5%-23.3% at an average power of 28-29.9 dBm is measured, while the error vector magnitude (EVM) specification of <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>32 dB is met. When digital predistortion (DPD) is applied, MCS13 EHT320 signals are also supported. The RX mode achieves a gain of 9.1-12.1 dB, a noise figure (NF) of 1.6-1.9 dB, and an input-referred third-order intercept point (IIP3) of 20.2-25.4 dBm.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3288390</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9542-8709</orcidid><orcidid>https://orcid.org/0000-0001-6788-1656</orcidid><orcidid>https://orcid.org/0000-0002-4679-9722</orcidid><orcidid>https://orcid.org/0000-0002-7318-4045</orcidid><orcidid>https://orcid.org/0000-0003-3015-6201</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2024-02, Vol.59 (2), p.1-14
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_10172174
source IEEE Electronic Library (IEL)
subjects Capacitance
Chokes (restrictions)
Compact
Efficiency
Error analysis
Finite element analysis
front-end module (FEM)
gallium nitride (GaN)
Gallium nitrides
high efficiency
High electron mobility transistors
Impedance
Impedance matching
Inductors
Insertion loss
low-noise amplifier (LNA)
Matching
Modules
monolithic microwave integrated circuit (MMIC)
Noise levels
post-matching (PM)
power amplifier (PA)
Power amplifiers
Semiconductor devices
Switches
Switching circuits
Third order intercept point
Transistors
Transmission lines
transmit/receive (T/R) switch
Wi-Fi 7
title A 4.9-7.1-GHz High-Efficiency Post-Matching GaN Front-End Module for Wi-Fi 7 Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%204.9-7.1-GHz%20High-Efficiency%20Post-Matching%20GaN%20Front-End%20Module%20for%20Wi-Fi%207%20Application&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Lv,%20Guansheng&rft.date=2024-02-01&rft.volume=59&rft.issue=2&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3288390&rft_dat=%3Cproquest_RIE%3E2920421091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920421091&rft_id=info:pmid/&rft_ieee_id=10172174&rfr_iscdi=true