Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling

Numerical solution of Maxwell's equations is often based on a discretization of an unknown field quantity using a set of N basis functions. A set of higher order hierarchical vector basis functions for the electric surface current in MoM codes with curvilinear quad patches is investigated. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jorgensen, E., Volakis, J.L., Meincke, P., Breinbjerg, O.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621 vol.4
container_issue
container_start_page 618
container_title
container_volume 4
creator Jorgensen, E.
Volakis, J.L.
Meincke, P.
Breinbjerg, O.
description Numerical solution of Maxwell's equations is often based on a discretization of an unknown field quantity using a set of N basis functions. A set of higher order hierarchical vector basis functions for the electric surface current in MoM codes with curvilinear quad patches is investigated. The basis is based on Legendre polynomials, modified to enforce current continuity, and are rather simple to implement in addition to allowing for a flexible selection of the polynomial order. This flexibility is not provided by interpolatory bases that traditionally have been preferred due to the condition number of the matrix. Numerical results obtained with EFIE and CFIE show that the hierarchical Legendre basis provides a better condition number of the MoM matrix than existing interpolatory bases. This allows for convergence in very few iterations using basis functions as high as 10th order.
doi_str_mv 10.1109/APS.2002.1017060
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1017060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1017060</ieee_id><sourcerecordid>1017060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c135t-b7491e3a0f7abb43417d848844ba34efad7f12f9538695c8ed522671051db2523</originalsourceid><addsrcrecordid>eNotkE9LxDAQxQMiKGvvgpd8ga752zTHZVFXWFBQz0uaTNpIt9WkrQh-eCPuMLz3GH68wyB0TcmaUqJvN88va0YIW1NCFanIGSq0qklerjgn_AIVKb2TPJJUmulL9LMLbQcRj9Fl7QJEE20XrOnxHloYXATcmBQS9vNgpzAOOY0RhymTU1gAh2GCNmYePmfzB-A09gvEhL_C1GE7xyX0YQATcZqjNxbwcXSQT-0VOvemT1CcfIXe7u9et7ty__TwuN3sS0u5nMpGCU2BG-KVaRrBBVWuFnUtRGO4AG-c8pR5LXldaWlrcJKxSlEiqWuYZHyFbv57AwAcPmI4mvh9OP2I_wLKvV8M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jorgensen, E. ; Volakis, J.L. ; Meincke, P. ; Breinbjerg, O.</creator><creatorcontrib>Jorgensen, E. ; Volakis, J.L. ; Meincke, P. ; Breinbjerg, O.</creatorcontrib><description>Numerical solution of Maxwell's equations is often based on a discretization of an unknown field quantity using a set of N basis functions. A set of higher order hierarchical vector basis functions for the electric surface current in MoM codes with curvilinear quad patches is investigated. The basis is based on Legendre polynomials, modified to enforce current continuity, and are rather simple to implement in addition to allowing for a flexible selection of the polynomial order. This flexibility is not provided by interpolatory bases that traditionally have been preferred due to the condition number of the matrix. Numerical results obtained with EFIE and CFIE show that the hierarchical Legendre basis provides a better condition number of the MoM matrix than existing interpolatory bases. This allows for convergence in very few iterations using basis functions as high as 10th order.</description><identifier>ISBN: 9780780373303</identifier><identifier>ISBN: 0780373308</identifier><identifier>DOI: 10.1109/APS.2002.1017060</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Differential equations ; Integral equations ; Iterative methods ; Linear systems ; Maxwell equations ; Message-oriented middleware ; Moment methods ; Polynomials</subject><ispartof>IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), 2002, Vol.4, p.618-621 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c135t-b7491e3a0f7abb43417d848844ba34efad7f12f9538695c8ed522671051db2523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1017060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1017060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jorgensen, E.</creatorcontrib><creatorcontrib>Volakis, J.L.</creatorcontrib><creatorcontrib>Meincke, P.</creatorcontrib><creatorcontrib>Breinbjerg, O.</creatorcontrib><title>Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling</title><title>IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313)</title><addtitle>APS</addtitle><description>Numerical solution of Maxwell's equations is often based on a discretization of an unknown field quantity using a set of N basis functions. A set of higher order hierarchical vector basis functions for the electric surface current in MoM codes with curvilinear quad patches is investigated. The basis is based on Legendre polynomials, modified to enforce current continuity, and are rather simple to implement in addition to allowing for a flexible selection of the polynomial order. This flexibility is not provided by interpolatory bases that traditionally have been preferred due to the condition number of the matrix. Numerical results obtained with EFIE and CFIE show that the hierarchical Legendre basis provides a better condition number of the MoM matrix than existing interpolatory bases. This allows for convergence in very few iterations using basis functions as high as 10th order.</description><subject>Convergence</subject><subject>Differential equations</subject><subject>Integral equations</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Maxwell equations</subject><subject>Message-oriented middleware</subject><subject>Moment methods</subject><subject>Polynomials</subject><isbn>9780780373303</isbn><isbn>0780373308</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE9LxDAQxQMiKGvvgpd8ga752zTHZVFXWFBQz0uaTNpIt9WkrQh-eCPuMLz3GH68wyB0TcmaUqJvN88va0YIW1NCFanIGSq0qklerjgn_AIVKb2TPJJUmulL9LMLbQcRj9Fl7QJEE20XrOnxHloYXATcmBQS9vNgpzAOOY0RhymTU1gAh2GCNmYePmfzB-A09gvEhL_C1GE7xyX0YQATcZqjNxbwcXSQT-0VOvemT1CcfIXe7u9et7ty__TwuN3sS0u5nMpGCU2BG-KVaRrBBVWuFnUtRGO4AG-c8pR5LXldaWlrcJKxSlEiqWuYZHyFbv57AwAcPmI4mvh9OP2I_wLKvV8M</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Jorgensen, E.</creator><creator>Volakis, J.L.</creator><creator>Meincke, P.</creator><creator>Breinbjerg, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling</title><author>Jorgensen, E. ; Volakis, J.L. ; Meincke, P. ; Breinbjerg, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c135t-b7491e3a0f7abb43417d848844ba34efad7f12f9538695c8ed522671051db2523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Convergence</topic><topic>Differential equations</topic><topic>Integral equations</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Maxwell equations</topic><topic>Message-oriented middleware</topic><topic>Moment methods</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Jorgensen, E.</creatorcontrib><creatorcontrib>Volakis, J.L.</creatorcontrib><creatorcontrib>Meincke, P.</creatorcontrib><creatorcontrib>Breinbjerg, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jorgensen, E.</au><au>Volakis, J.L.</au><au>Meincke, P.</au><au>Breinbjerg, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling</atitle><btitle>IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313)</btitle><stitle>APS</stitle><date>2002</date><risdate>2002</risdate><volume>4</volume><spage>618</spage><epage>621 vol.4</epage><pages>618-621 vol.4</pages><isbn>9780780373303</isbn><isbn>0780373308</isbn><abstract>Numerical solution of Maxwell's equations is often based on a discretization of an unknown field quantity using a set of N basis functions. A set of higher order hierarchical vector basis functions for the electric surface current in MoM codes with curvilinear quad patches is investigated. The basis is based on Legendre polynomials, modified to enforce current continuity, and are rather simple to implement in addition to allowing for a flexible selection of the polynomial order. This flexibility is not provided by interpolatory bases that traditionally have been preferred due to the condition number of the matrix. Numerical results obtained with EFIE and CFIE show that the hierarchical Legendre basis provides a better condition number of the MoM matrix than existing interpolatory bases. This allows for convergence in very few iterations using basis functions as high as 10th order.</abstract><pub>IEEE</pub><doi>10.1109/APS.2002.1017060</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780373303
ispartof IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), 2002, Vol.4, p.618-621 vol.4
issn
language eng
recordid cdi_ieee_primary_1017060
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Differential equations
Integral equations
Iterative methods
Linear systems
Maxwell equations
Message-oriented middleware
Moment methods
Polynomials
title Higher order hierarchical Legendre basis functions for iterative integral equation solvers with curvilinear surface modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Higher%20order%20hierarchical%20Legendre%20basis%20functions%20for%20iterative%20integral%20equation%20solvers%20with%20curvilinear%20surface%20modeling&rft.btitle=IEEE%20Antennas%20and%20Propagation%20Society%20International%20Symposium%20(IEEE%20Cat.%20No.02CH37313)&rft.au=Jorgensen,%20E.&rft.date=2002&rft.volume=4&rft.spage=618&rft.epage=621%20vol.4&rft.pages=618-621%20vol.4&rft.isbn=9780780373303&rft.isbn_list=0780373308&rft_id=info:doi/10.1109/APS.2002.1017060&rft_dat=%3Cieee_6IE%3E1017060%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1017060&rfr_iscdi=true