On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria

The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping \varphi of objective costs to subjective costs. An o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2023-11, Vol.31 (6), p.1-16
Hauptverfasser: Smith, Kevin M., Chapman, Margaret P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 6
container_start_page 1
container_title IEEE transactions on control systems technology
container_volume 31
creator Smith, Kevin M.
Chapman, Margaret P.
description The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping \varphi of objective costs to subjective costs. An objective cost is a realization y of a random variable Y . In contrast, a subjective cost is a realization \varphi(y) of a random variable \varphi(Y) that has been transformed to measure preferences about the outcomes. For EU, the transformation is \varphi(y) = \exp(({-\theta}/{2})y) , and under certain conditions, the quantity \varphi^{-1}(E(\varphi(Y))) can be approximated by a linear combination of the mean and variance of Y . More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable Y concerns a fraction of its possible realizations. If Y is a continuous random variable with finite E(|Y|) , then the CVaR of Y at level \alpha is the expectation of Y in the \alpha \cdot 100\% worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs t
doi_str_mv 10.1109/TCST.2023.3274843
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10169090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10169090</ieee_id><sourcerecordid>2881524490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcJ2ax-QxyzLUBxQq2oq7kM7cgdTpTE1Ssf_eGdqFq3O4nHO4fAjdMjphjOYPy-J9OeGUi4ngOjOZOEMjJqUh1Ch53nuqBFFSqEt0FeOGUpZJrkfoc9Hi2e-ua6FN3jV4lXzj0wG7tsJF11Y--a7t7x-u2QNxibz5-IVdxIOS6Q-ECPgVQt2FrWtLwEXwCYJ31-iidk2Em5OO0epxtiyeyXzx9FJM56QUQieSCZ4pykypDSsZr-Q65y7L8nUthHJ1Sde85E474WpNJZha5UwLwRwAFZVWYozuj7u70H3vISa76fahfzlabgyTvB-jfYodU2XoYgxQ213wWxcOllE7ALQDQDsAtCeAfefu2PEA8C_PVE77yT_ki2vZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881524490</pqid></control><display><type>article</type><title>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</title><source>IEEE Electronic Library (IEL)</source><creator>Smith, Kevin M. ; Chapman, Margaret P.</creator><creatorcontrib>Smith, Kevin M. ; Chapman, Margaret P.</creatorcontrib><description><![CDATA[The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping <inline-formula> <tex-math notation="LaTeX">\varphi</tex-math> </inline-formula> of objective costs to subjective costs. An objective cost is a realization <inline-formula> <tex-math notation="LaTeX">y</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. In contrast, a subjective cost is a realization <inline-formula> <tex-math notation="LaTeX">\varphi(y)</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">\varphi(Y)</tex-math> </inline-formula> that has been transformed to measure preferences about the outcomes. For EU, the transformation is <inline-formula> <tex-math notation="LaTeX">\varphi(y) = \exp(({-\theta}/{2})y)</tex-math> </inline-formula>, and under certain conditions, the quantity <inline-formula> <tex-math notation="LaTeX">\varphi^{-1}(E(\varphi(Y)))</tex-math> </inline-formula> can be approximated by a linear combination of the mean and variance of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> concerns a fraction of its possible realizations. If <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> is a continuous random variable with finite <inline-formula> <tex-math notation="LaTeX">E(|Y|)</tex-math> </inline-formula>, then the CVaR of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> at level <inline-formula> <tex-math notation="LaTeX">\alpha</tex-math> </inline-formula> is the expectation of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\alpha \cdot 100\%</tex-math> </inline-formula> worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs that arise when using EU and CVaR for optimal control and safety analysis. We are hopeful that this work will advance the interpretability of risk-averse control technology and elucidate its potential benefits.]]></description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3274843</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Conditional value-at-risk (CVaR) ; Continuity (mathematics) ; Costs ; Decision theory ; exponential utility (EU) ; Optimal control ; Optimization ; Random variables ; Risk aversion ; Risk management ; Safety ; safety analysis ; Stochastic systems</subject><ispartof>IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</citedby><cites>FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</cites><orcidid>0000-0002-8026-8917 ; 0000-0002-2483-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10169090$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Smith, Kevin M.</creatorcontrib><creatorcontrib>Chapman, Margaret P.</creatorcontrib><title>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description><![CDATA[The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping <inline-formula> <tex-math notation="LaTeX">\varphi</tex-math> </inline-formula> of objective costs to subjective costs. An objective cost is a realization <inline-formula> <tex-math notation="LaTeX">y</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. In contrast, a subjective cost is a realization <inline-formula> <tex-math notation="LaTeX">\varphi(y)</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">\varphi(Y)</tex-math> </inline-formula> that has been transformed to measure preferences about the outcomes. For EU, the transformation is <inline-formula> <tex-math notation="LaTeX">\varphi(y) = \exp(({-\theta}/{2})y)</tex-math> </inline-formula>, and under certain conditions, the quantity <inline-formula> <tex-math notation="LaTeX">\varphi^{-1}(E(\varphi(Y)))</tex-math> </inline-formula> can be approximated by a linear combination of the mean and variance of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> concerns a fraction of its possible realizations. If <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> is a continuous random variable with finite <inline-formula> <tex-math notation="LaTeX">E(|Y|)</tex-math> </inline-formula>, then the CVaR of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> at level <inline-formula> <tex-math notation="LaTeX">\alpha</tex-math> </inline-formula> is the expectation of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\alpha \cdot 100\%</tex-math> </inline-formula> worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs that arise when using EU and CVaR for optimal control and safety analysis. We are hopeful that this work will advance the interpretability of risk-averse control technology and elucidate its potential benefits.]]></description><subject>Aerospace electronics</subject><subject>Conditional value-at-risk (CVaR)</subject><subject>Continuity (mathematics)</subject><subject>Costs</subject><subject>Decision theory</subject><subject>exponential utility (EU)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Risk aversion</subject><subject>Risk management</subject><subject>Safety</subject><subject>safety analysis</subject><subject>Stochastic systems</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKs_QHARcJ2ax-QxyzLUBxQq2oq7kM7cgdTpTE1Ssf_eGdqFq3O4nHO4fAjdMjphjOYPy-J9OeGUi4ngOjOZOEMjJqUh1Ch53nuqBFFSqEt0FeOGUpZJrkfoc9Hi2e-ua6FN3jV4lXzj0wG7tsJF11Y--a7t7x-u2QNxibz5-IVdxIOS6Q-ECPgVQt2FrWtLwEXwCYJ31-iidk2Em5OO0epxtiyeyXzx9FJM56QUQieSCZ4pykypDSsZr-Q65y7L8nUthHJ1Sde85E474WpNJZha5UwLwRwAFZVWYozuj7u70H3vISa76fahfzlabgyTvB-jfYodU2XoYgxQ213wWxcOllE7ALQDQDsAtCeAfefu2PEA8C_PVE77yT_ki2vZ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Smith, Kevin M.</creator><creator>Chapman, Margaret P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8026-8917</orcidid><orcidid>https://orcid.org/0000-0002-2483-6545</orcidid></search><sort><creationdate>20231101</creationdate><title>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</title><author>Smith, Kevin M. ; Chapman, Margaret P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace electronics</topic><topic>Conditional value-at-risk (CVaR)</topic><topic>Continuity (mathematics)</topic><topic>Costs</topic><topic>Decision theory</topic><topic>exponential utility (EU)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Risk aversion</topic><topic>Risk management</topic><topic>Safety</topic><topic>safety analysis</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Kevin M.</creatorcontrib><creatorcontrib>Chapman, Margaret P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Kevin M.</au><au>Chapman, Margaret P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract><![CDATA[The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping <inline-formula> <tex-math notation="LaTeX">\varphi</tex-math> </inline-formula> of objective costs to subjective costs. An objective cost is a realization <inline-formula> <tex-math notation="LaTeX">y</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. In contrast, a subjective cost is a realization <inline-formula> <tex-math notation="LaTeX">\varphi(y)</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">\varphi(Y)</tex-math> </inline-formula> that has been transformed to measure preferences about the outcomes. For EU, the transformation is <inline-formula> <tex-math notation="LaTeX">\varphi(y) = \exp(({-\theta}/{2})y)</tex-math> </inline-formula>, and under certain conditions, the quantity <inline-formula> <tex-math notation="LaTeX">\varphi^{-1}(E(\varphi(Y)))</tex-math> </inline-formula> can be approximated by a linear combination of the mean and variance of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> concerns a fraction of its possible realizations. If <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> is a continuous random variable with finite <inline-formula> <tex-math notation="LaTeX">E(|Y|)</tex-math> </inline-formula>, then the CVaR of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> at level <inline-formula> <tex-math notation="LaTeX">\alpha</tex-math> </inline-formula> is the expectation of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\alpha \cdot 100\%</tex-math> </inline-formula> worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs that arise when using EU and CVaR for optimal control and safety analysis. We are hopeful that this work will advance the interpretability of risk-averse control technology and elucidate its potential benefits.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3274843</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8026-8917</orcidid><orcidid>https://orcid.org/0000-0002-2483-6545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-16
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_10169090
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Conditional value-at-risk (CVaR)
Continuity (mathematics)
Costs
Decision theory
exponential utility (EU)
Optimal control
Optimization
Random variables
Risk aversion
Risk management
Safety
safety analysis
Stochastic systems
title On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exponential%20Utility%20and%20Conditional%20Value-at-Risk%20as%20Risk-Averse%20Performance%20Criteria&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Smith,%20Kevin%20M.&rft.date=2023-11-01&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3274843&rft_dat=%3Cproquest_ieee_%3E2881524490%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881524490&rft_id=info:pmid/&rft_ieee_id=10169090&rfr_iscdi=true