On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria
The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping \varphi of objective costs to subjective costs. An o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2023-11, Vol.31 (6), p.1-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on control systems technology |
container_volume | 31 |
creator | Smith, Kevin M. Chapman, Margaret P. |
description | The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping \varphi of objective costs to subjective costs. An objective cost is a realization y of a random variable Y . In contrast, a subjective cost is a realization \varphi(y) of a random variable \varphi(Y) that has been transformed to measure preferences about the outcomes. For EU, the transformation is \varphi(y) = \exp(({-\theta}/{2})y) , and under certain conditions, the quantity \varphi^{-1}(E(\varphi(Y))) can be approximated by a linear combination of the mean and variance of Y . More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable Y concerns a fraction of its possible realizations. If Y is a continuous random variable with finite E(|Y|) , then the CVaR of Y at level \alpha is the expectation of Y in the \alpha \cdot 100\% worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs t |
doi_str_mv | 10.1109/TCST.2023.3274843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10169090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10169090</ieee_id><sourcerecordid>2881524490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcJ2ax-QxyzLUBxQq2oq7kM7cgdTpTE1Ssf_eGdqFq3O4nHO4fAjdMjphjOYPy-J9OeGUi4ngOjOZOEMjJqUh1Ch53nuqBFFSqEt0FeOGUpZJrkfoc9Hi2e-ua6FN3jV4lXzj0wG7tsJF11Y--a7t7x-u2QNxibz5-IVdxIOS6Q-ECPgVQt2FrWtLwEXwCYJ31-iidk2Em5OO0epxtiyeyXzx9FJM56QUQieSCZ4pykypDSsZr-Q65y7L8nUthHJ1Sde85E474WpNJZha5UwLwRwAFZVWYozuj7u70H3vISa76fahfzlabgyTvB-jfYodU2XoYgxQ213wWxcOllE7ALQDQDsAtCeAfefu2PEA8C_PVE77yT_ki2vZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881524490</pqid></control><display><type>article</type><title>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</title><source>IEEE Electronic Library (IEL)</source><creator>Smith, Kevin M. ; Chapman, Margaret P.</creator><creatorcontrib>Smith, Kevin M. ; Chapman, Margaret P.</creatorcontrib><description><![CDATA[The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping <inline-formula> <tex-math notation="LaTeX">\varphi</tex-math> </inline-formula> of objective costs to subjective costs. An objective cost is a realization <inline-formula> <tex-math notation="LaTeX">y</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. In contrast, a subjective cost is a realization <inline-formula> <tex-math notation="LaTeX">\varphi(y)</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">\varphi(Y)</tex-math> </inline-formula> that has been transformed to measure preferences about the outcomes. For EU, the transformation is <inline-formula> <tex-math notation="LaTeX">\varphi(y) = \exp(({-\theta}/{2})y)</tex-math> </inline-formula>, and under certain conditions, the quantity <inline-formula> <tex-math notation="LaTeX">\varphi^{-1}(E(\varphi(Y)))</tex-math> </inline-formula> can be approximated by a linear combination of the mean and variance of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> concerns a fraction of its possible realizations. If <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> is a continuous random variable with finite <inline-formula> <tex-math notation="LaTeX">E(|Y|)</tex-math> </inline-formula>, then the CVaR of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> at level <inline-formula> <tex-math notation="LaTeX">\alpha</tex-math> </inline-formula> is the expectation of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\alpha \cdot 100\%</tex-math> </inline-formula> worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs that arise when using EU and CVaR for optimal control and safety analysis. We are hopeful that this work will advance the interpretability of risk-averse control technology and elucidate its potential benefits.]]></description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2023.3274843</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Conditional value-at-risk (CVaR) ; Continuity (mathematics) ; Costs ; Decision theory ; exponential utility (EU) ; Optimal control ; Optimization ; Random variables ; Risk aversion ; Risk management ; Safety ; safety analysis ; Stochastic systems</subject><ispartof>IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</citedby><cites>FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</cites><orcidid>0000-0002-8026-8917 ; 0000-0002-2483-6545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10169090$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Smith, Kevin M.</creatorcontrib><creatorcontrib>Chapman, Margaret P.</creatorcontrib><title>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description><![CDATA[The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping <inline-formula> <tex-math notation="LaTeX">\varphi</tex-math> </inline-formula> of objective costs to subjective costs. An objective cost is a realization <inline-formula> <tex-math notation="LaTeX">y</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. In contrast, a subjective cost is a realization <inline-formula> <tex-math notation="LaTeX">\varphi(y)</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">\varphi(Y)</tex-math> </inline-formula> that has been transformed to measure preferences about the outcomes. For EU, the transformation is <inline-formula> <tex-math notation="LaTeX">\varphi(y) = \exp(({-\theta}/{2})y)</tex-math> </inline-formula>, and under certain conditions, the quantity <inline-formula> <tex-math notation="LaTeX">\varphi^{-1}(E(\varphi(Y)))</tex-math> </inline-formula> can be approximated by a linear combination of the mean and variance of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> concerns a fraction of its possible realizations. If <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> is a continuous random variable with finite <inline-formula> <tex-math notation="LaTeX">E(|Y|)</tex-math> </inline-formula>, then the CVaR of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> at level <inline-formula> <tex-math notation="LaTeX">\alpha</tex-math> </inline-formula> is the expectation of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\alpha \cdot 100\%</tex-math> </inline-formula> worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs that arise when using EU and CVaR for optimal control and safety analysis. We are hopeful that this work will advance the interpretability of risk-averse control technology and elucidate its potential benefits.]]></description><subject>Aerospace electronics</subject><subject>Conditional value-at-risk (CVaR)</subject><subject>Continuity (mathematics)</subject><subject>Costs</subject><subject>Decision theory</subject><subject>exponential utility (EU)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Random variables</subject><subject>Risk aversion</subject><subject>Risk management</subject><subject>Safety</subject><subject>safety analysis</subject><subject>Stochastic systems</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKs_QHARcJ2ax-QxyzLUBxQq2oq7kM7cgdTpTE1Ssf_eGdqFq3O4nHO4fAjdMjphjOYPy-J9OeGUi4ngOjOZOEMjJqUh1Ch53nuqBFFSqEt0FeOGUpZJrkfoc9Hi2e-ua6FN3jV4lXzj0wG7tsJF11Y--a7t7x-u2QNxibz5-IVdxIOS6Q-ECPgVQt2FrWtLwEXwCYJ31-iidk2Em5OO0epxtiyeyXzx9FJM56QUQieSCZ4pykypDSsZr-Q65y7L8nUthHJ1Sde85E474WpNJZha5UwLwRwAFZVWYozuj7u70H3vISa76fahfzlabgyTvB-jfYodU2XoYgxQ213wWxcOllE7ALQDQDsAtCeAfefu2PEA8C_PVE77yT_ki2vZ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Smith, Kevin M.</creator><creator>Chapman, Margaret P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8026-8917</orcidid><orcidid>https://orcid.org/0000-0002-2483-6545</orcidid></search><sort><creationdate>20231101</creationdate><title>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</title><author>Smith, Kevin M. ; Chapman, Margaret P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-43246018c781c12d5b92a449bf336afc0b2c2a7a3af705e8f6917331aee03d763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace electronics</topic><topic>Conditional value-at-risk (CVaR)</topic><topic>Continuity (mathematics)</topic><topic>Costs</topic><topic>Decision theory</topic><topic>exponential utility (EU)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Random variables</topic><topic>Risk aversion</topic><topic>Risk management</topic><topic>Safety</topic><topic>safety analysis</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Kevin M.</creatorcontrib><creatorcontrib>Chapman, Margaret P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Kevin M.</au><au>Chapman, Margaret P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>31</volume><issue>6</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract><![CDATA[The standard approach to risk-averse control is to use the exponential utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping <inline-formula> <tex-math notation="LaTeX">\varphi</tex-math> </inline-formula> of objective costs to subjective costs. An objective cost is a realization <inline-formula> <tex-math notation="LaTeX">y</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. In contrast, a subjective cost is a realization <inline-formula> <tex-math notation="LaTeX">\varphi(y)</tex-math> </inline-formula> of a random variable <inline-formula> <tex-math notation="LaTeX">\varphi(Y)</tex-math> </inline-formula> that has been transformed to measure preferences about the outcomes. For EU, the transformation is <inline-formula> <tex-math notation="LaTeX">\varphi(y) = \exp(({-\theta}/{2})y)</tex-math> </inline-formula>, and under certain conditions, the quantity <inline-formula> <tex-math notation="LaTeX">\varphi^{-1}(E(\varphi(Y)))</tex-math> </inline-formula> can be approximated by a linear combination of the mean and variance of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula>. More recently, there has been growing interest in risk-averse control using the conditional value-at-risk (CVaR) functional. In contrast to the EU functional, the CVaR of a random variable <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> concerns a fraction of its possible realizations. If <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> is a continuous random variable with finite <inline-formula> <tex-math notation="LaTeX">E(|Y|)</tex-math> </inline-formula>, then the CVaR of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> at level <inline-formula> <tex-math notation="LaTeX">\alpha</tex-math> </inline-formula> is the expectation of <inline-formula> <tex-math notation="LaTeX">Y</tex-math> </inline-formula> in the <inline-formula> <tex-math notation="LaTeX">\alpha \cdot 100\%</tex-math> </inline-formula> worst cases. Here, we study the applications of risk-averse functionals to controller synthesis and safety analysis through the development of numerical examples, with an emphasis on EU and CVaR. Our contribution is to examine the decision-theoretic, mathematical, and computational tradeoffs that arise when using EU and CVaR for optimal control and safety analysis. We are hopeful that this work will advance the interpretability of risk-averse control technology and elucidate its potential benefits.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2023.3274843</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8026-8917</orcidid><orcidid>https://orcid.org/0000-0002-2483-6545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2023-11, Vol.31 (6), p.1-16 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_10169090 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace electronics Conditional value-at-risk (CVaR) Continuity (mathematics) Costs Decision theory exponential utility (EU) Optimal control Optimization Random variables Risk aversion Risk management Safety safety analysis Stochastic systems |
title | On Exponential Utility and Conditional Value-at-Risk as Risk-Averse Performance Criteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exponential%20Utility%20and%20Conditional%20Value-at-Risk%20as%20Risk-Averse%20Performance%20Criteria&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Smith,%20Kevin%20M.&rft.date=2023-11-01&rft.volume=31&rft.issue=6&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2023.3274843&rft_dat=%3Cproquest_ieee_%3E2881524490%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881524490&rft_id=info:pmid/&rft_ieee_id=10169090&rfr_iscdi=true |