Non-Uniform Illumination Underwater Image Restoration via Illumination Channel Sparsity Prior

Underwater image quality is seriously degraded due to the insufficient light in water. Although artificial illumination can assist imaging, it often brings non-uniform illumination phenomenon. To this end, we develop an illumination channel sparsity prior (ICSP) guided variational framework for non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-02, Vol.34 (2), p.799-814
Hauptverfasser: Hou, Guojia, Li, Nan, Zhuang, Peixian, Li, Kunqian, Sun, Haihan, Li, Chongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue 2
container_start_page 799
container_title IEEE transactions on circuits and systems for video technology
container_volume 34
creator Hou, Guojia
Li, Nan
Zhuang, Peixian
Li, Kunqian
Sun, Haihan
Li, Chongyi
description Underwater image quality is seriously degraded due to the insufficient light in water. Although artificial illumination can assist imaging, it often brings non-uniform illumination phenomenon. To this end, we develop an illumination channel sparsity prior (ICSP) guided variational framework for non-uniform illumination underwater image restoration. Technically, the illumination channel sparsity prior is built on the observation that the illumination channel of a uniform-light underwater image in HSI color space contains few pixels whose intensity is very low. Then according to the Retinex theory, we design a variational model with L0 norm term, constraint term, and gradient term, by integrating the proposed ICSP into an extended underwater image formation model. Such three regularizations are effective in enhancing the brightness, correcting color distortion, and revealing structures and fine-scale details. Meanwhile, we exploit a fast numerical algorithm on the base of the alternating direction method of multipliers (ADMM) to accelerate solving this optimization problem. We also collect a benchmark dataset, namely NUID that contains 925 real underwater images of different non-uniform illumination. Extensive experiments demonstrate that our proposed method is effective in terms of qualitative and quantitative comparisons, ablation studies, convergence analysis, and applications. The code and dataset are available at https://github.com/Hou-Guojia/ICSP .
doi_str_mv 10.1109/TCSVT.2023.3290363
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10167688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10167688</ieee_id><sourcerecordid>2923122879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-7f3101fbcf657fc1d21def241bbdcf5b761ea9dffd89c022de4ba0f42ef8df943</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhisEEmPwBxCHSpw7YqcfyRFNfEyaALGNG4rSJoFMbTLSDrR_T6E7wMmW_D629UTROZAJAOFXy-niZTlBgnRCkROa04NoBFnGEkSSHfY9ySBhCNlxdNK2a0IgZWkxil4fvEtWzhofmnhW19vGOtlZ7-KVUzp8yU6HeNbINx0_67bzYRh-Wvk_PX2Xzuk6XmxkaG23i5-C9eE0OjKybvXZvo6j1e3NcnqfzB_vZtPreVIhz7ukMBQImLIyeVaYChSC0gZTKEtVmawsctCSK2MU4xVBVDotJTEpasOU4SkdR5fD3k3wH9v-T7H22-D6kwI5UkBkBe9TOKSq4Ns2aCM2wTYy7AQQ8aNR_GoUPxrFXmMPXQyQ1Vr_ASAvcsboN7NHcYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923122879</pqid></control><display><type>article</type><title>Non-Uniform Illumination Underwater Image Restoration via Illumination Channel Sparsity Prior</title><source>IEEE Electronic Library (IEL)</source><creator>Hou, Guojia ; Li, Nan ; Zhuang, Peixian ; Li, Kunqian ; Sun, Haihan ; Li, Chongyi</creator><creatorcontrib>Hou, Guojia ; Li, Nan ; Zhuang, Peixian ; Li, Kunqian ; Sun, Haihan ; Li, Chongyi</creatorcontrib><description>Underwater image quality is seriously degraded due to the insufficient light in water. Although artificial illumination can assist imaging, it often brings non-uniform illumination phenomenon. To this end, we develop an illumination channel sparsity prior (ICSP) guided variational framework for non-uniform illumination underwater image restoration. Technically, the illumination channel sparsity prior is built on the observation that the illumination channel of a uniform-light underwater image in HSI color space contains few pixels whose intensity is very low. Then according to the Retinex theory, we design a variational model with L0 norm term, constraint term, and gradient term, by integrating the proposed ICSP into an extended underwater image formation model. Such three regularizations are effective in enhancing the brightness, correcting color distortion, and revealing structures and fine-scale details. Meanwhile, we exploit a fast numerical algorithm on the base of the alternating direction method of multipliers (ADMM) to accelerate solving this optimization problem. We also collect a benchmark dataset, namely NUID that contains 925 real underwater images of different non-uniform illumination. Extensive experiments demonstrate that our proposed method is effective in terms of qualitative and quantitative comparisons, ablation studies, convergence analysis, and applications. The code and dataset are available at https://github.com/Hou-Guojia/ICSP .</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3290363</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; ADMM ; Algorithms ; Channel estimation ; Color ; Constraint modelling ; Datasets ; Estimation ; Illumination ; illumination channel sparsity prior ; Image color analysis ; Image enhancement ; Image quality ; Image restoration ; Imaging ; Light ; Lighting ; Luminous intensity ; Non-uniform illumination ; NUID ; Numerical analysis ; Qualitative analysis ; Sparsity ; Underwater ; underwater image restoration</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-02, Vol.34 (2), p.799-814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-7f3101fbcf657fc1d21def241bbdcf5b761ea9dffd89c022de4ba0f42ef8df943</citedby><cites>FETCH-LOGICAL-c296t-7f3101fbcf657fc1d21def241bbdcf5b761ea9dffd89c022de4ba0f42ef8df943</cites><orcidid>0000-0001-6509-6259 ; 0000-0003-2609-2460 ; 0000-0002-7143-9569 ; 0000-0003-2749-9916 ; 0000-0001-9831-6457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10167688$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10167688$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hou, Guojia</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Li, Kunqian</creatorcontrib><creatorcontrib>Sun, Haihan</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><title>Non-Uniform Illumination Underwater Image Restoration via Illumination Channel Sparsity Prior</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Underwater image quality is seriously degraded due to the insufficient light in water. Although artificial illumination can assist imaging, it often brings non-uniform illumination phenomenon. To this end, we develop an illumination channel sparsity prior (ICSP) guided variational framework for non-uniform illumination underwater image restoration. Technically, the illumination channel sparsity prior is built on the observation that the illumination channel of a uniform-light underwater image in HSI color space contains few pixels whose intensity is very low. Then according to the Retinex theory, we design a variational model with L0 norm term, constraint term, and gradient term, by integrating the proposed ICSP into an extended underwater image formation model. Such three regularizations are effective in enhancing the brightness, correcting color distortion, and revealing structures and fine-scale details. Meanwhile, we exploit a fast numerical algorithm on the base of the alternating direction method of multipliers (ADMM) to accelerate solving this optimization problem. We also collect a benchmark dataset, namely NUID that contains 925 real underwater images of different non-uniform illumination. Extensive experiments demonstrate that our proposed method is effective in terms of qualitative and quantitative comparisons, ablation studies, convergence analysis, and applications. The code and dataset are available at https://github.com/Hou-Guojia/ICSP .</description><subject>Ablation</subject><subject>ADMM</subject><subject>Algorithms</subject><subject>Channel estimation</subject><subject>Color</subject><subject>Constraint modelling</subject><subject>Datasets</subject><subject>Estimation</subject><subject>Illumination</subject><subject>illumination channel sparsity prior</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>Imaging</subject><subject>Light</subject><subject>Lighting</subject><subject>Luminous intensity</subject><subject>Non-uniform illumination</subject><subject>NUID</subject><subject>Numerical analysis</subject><subject>Qualitative analysis</subject><subject>Sparsity</subject><subject>Underwater</subject><subject>underwater image restoration</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkE1PwzAMhisEEmPwBxCHSpw7YqcfyRFNfEyaALGNG4rSJoFMbTLSDrR_T6E7wMmW_D629UTROZAJAOFXy-niZTlBgnRCkROa04NoBFnGEkSSHfY9ySBhCNlxdNK2a0IgZWkxil4fvEtWzhofmnhW19vGOtlZ7-KVUzp8yU6HeNbINx0_67bzYRh-Wvk_PX2Xzuk6XmxkaG23i5-C9eE0OjKybvXZvo6j1e3NcnqfzB_vZtPreVIhz7ukMBQImLIyeVaYChSC0gZTKEtVmawsctCSK2MU4xVBVDotJTEpasOU4SkdR5fD3k3wH9v-T7H22-D6kwI5UkBkBe9TOKSq4Ns2aCM2wTYy7AQQ8aNR_GoUPxrFXmMPXQyQ1Vr_ASAvcsboN7NHcYI</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hou, Guojia</creator><creator>Li, Nan</creator><creator>Zhuang, Peixian</creator><creator>Li, Kunqian</creator><creator>Sun, Haihan</creator><creator>Li, Chongyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6509-6259</orcidid><orcidid>https://orcid.org/0000-0003-2609-2460</orcidid><orcidid>https://orcid.org/0000-0002-7143-9569</orcidid><orcidid>https://orcid.org/0000-0003-2749-9916</orcidid><orcidid>https://orcid.org/0000-0001-9831-6457</orcidid></search><sort><creationdate>20240201</creationdate><title>Non-Uniform Illumination Underwater Image Restoration via Illumination Channel Sparsity Prior</title><author>Hou, Guojia ; Li, Nan ; Zhuang, Peixian ; Li, Kunqian ; Sun, Haihan ; Li, Chongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-7f3101fbcf657fc1d21def241bbdcf5b761ea9dffd89c022de4ba0f42ef8df943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>ADMM</topic><topic>Algorithms</topic><topic>Channel estimation</topic><topic>Color</topic><topic>Constraint modelling</topic><topic>Datasets</topic><topic>Estimation</topic><topic>Illumination</topic><topic>illumination channel sparsity prior</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>Imaging</topic><topic>Light</topic><topic>Lighting</topic><topic>Luminous intensity</topic><topic>Non-uniform illumination</topic><topic>NUID</topic><topic>Numerical analysis</topic><topic>Qualitative analysis</topic><topic>Sparsity</topic><topic>Underwater</topic><topic>underwater image restoration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Guojia</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Li, Kunqian</creatorcontrib><creatorcontrib>Sun, Haihan</creatorcontrib><creatorcontrib>Li, Chongyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Guojia</au><au>Li, Nan</au><au>Zhuang, Peixian</au><au>Li, Kunqian</au><au>Sun, Haihan</au><au>Li, Chongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Uniform Illumination Underwater Image Restoration via Illumination Channel Sparsity Prior</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><spage>799</spage><epage>814</epage><pages>799-814</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Underwater image quality is seriously degraded due to the insufficient light in water. Although artificial illumination can assist imaging, it often brings non-uniform illumination phenomenon. To this end, we develop an illumination channel sparsity prior (ICSP) guided variational framework for non-uniform illumination underwater image restoration. Technically, the illumination channel sparsity prior is built on the observation that the illumination channel of a uniform-light underwater image in HSI color space contains few pixels whose intensity is very low. Then according to the Retinex theory, we design a variational model with L0 norm term, constraint term, and gradient term, by integrating the proposed ICSP into an extended underwater image formation model. Such three regularizations are effective in enhancing the brightness, correcting color distortion, and revealing structures and fine-scale details. Meanwhile, we exploit a fast numerical algorithm on the base of the alternating direction method of multipliers (ADMM) to accelerate solving this optimization problem. We also collect a benchmark dataset, namely NUID that contains 925 real underwater images of different non-uniform illumination. Extensive experiments demonstrate that our proposed method is effective in terms of qualitative and quantitative comparisons, ablation studies, convergence analysis, and applications. The code and dataset are available at https://github.com/Hou-Guojia/ICSP .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3290363</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6509-6259</orcidid><orcidid>https://orcid.org/0000-0003-2609-2460</orcidid><orcidid>https://orcid.org/0000-0002-7143-9569</orcidid><orcidid>https://orcid.org/0000-0003-2749-9916</orcidid><orcidid>https://orcid.org/0000-0001-9831-6457</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-02, Vol.34 (2), p.799-814
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_10167688
source IEEE Electronic Library (IEL)
subjects Ablation
ADMM
Algorithms
Channel estimation
Color
Constraint modelling
Datasets
Estimation
Illumination
illumination channel sparsity prior
Image color analysis
Image enhancement
Image quality
Image restoration
Imaging
Light
Lighting
Luminous intensity
Non-uniform illumination
NUID
Numerical analysis
Qualitative analysis
Sparsity
Underwater
underwater image restoration
title Non-Uniform Illumination Underwater Image Restoration via Illumination Channel Sparsity Prior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Uniform%20Illumination%20Underwater%20Image%20Restoration%20via%20Illumination%20Channel%20Sparsity%20Prior&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Hou,%20Guojia&rft.date=2024-02-01&rft.volume=34&rft.issue=2&rft.spage=799&rft.epage=814&rft.pages=799-814&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3290363&rft_dat=%3Cproquest_RIE%3E2923122879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923122879&rft_id=info:pmid/&rft_ieee_id=10167688&rfr_iscdi=true