A hybrid method of FDTD(2,4) and subgrid FDTD(2,2) for modeling of coupling

With recent technological advancements, antenna elements have become smaller whereas the platforms they operate on, e.g., helicopter airframes, become electrically larger. These problems yield large computational domains and require significant computational resources. Traditional finite methods (FD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Georgakopoulos, S.V., Renaut, R.A., Balanis, C.A., Birtcher, C.R., Panaretos, A.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697 vol.2
container_issue
container_start_page 694
container_title
container_volume 2
creator Georgakopoulos, S.V.
Renaut, R.A.
Balanis, C.A.
Birtcher, C.R.
Panaretos, A.H.
description With recent technological advancements, antenna elements have become smaller whereas the platforms they operate on, e.g., helicopter airframes, become electrically larger. These problems yield large computational domains and require significant computational resources. Traditional finite methods (FDTD and FEM) are second-order accurate thereby restricting the size of the domains that can be handled efficiently. We propose an approach which combines a subgridding technique with a higher-order scheme. FDTD subgridding techniques divide the simulation space into two separate grids; a fine one and a coarse one. The standard FDTD(2,2) is used to handle any of the fine features of the structure, whereas on the coarse grid FDTD(2,4), which is second-order accurate in time and fourth-order accurate in space, is used. Thus existing successfully-applied techniques in FDTD(2,2) are available for use on the fine grid. On the coarse mesh, away from phenomena associated with the complex structure, FDTD(2,4) is used mainly to simulate wave propagation in homogeneous media. With this approach, high accuracy is obtained both around fine geometric features, such as thin wires, thin slots, etc., as well as in the wave propagation.
doi_str_mv 10.1109/APS.2002.1016741
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1016741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1016741</ieee_id><sourcerecordid>1016741</sourcerecordid><originalsourceid>FETCH-ieee_primary_10167413</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNDSw1HcMCNYzMjAw0jM0MDQzNzFkZuAyMLcwMDY3Njaw4GDgLS7OMgACUwMzSyNLTgZvR4WMyqSizBSF3NSSjPwUhfw0BTeXEBcNIx0TTYXEvBSF4tKkdJA8VNRIUyEtv0ghNz8lNSczLx2kPjm_tADE5mFgTUvMKU7lhdLcDNJuriHOHrqZqamp8QVFmbmJRZXxUHcZ45cFAI6NONs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid method of FDTD(2,4) and subgrid FDTD(2,2) for modeling of coupling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Georgakopoulos, S.V. ; Renaut, R.A. ; Balanis, C.A. ; Birtcher, C.R. ; Panaretos, A.H.</creator><creatorcontrib>Georgakopoulos, S.V. ; Renaut, R.A. ; Balanis, C.A. ; Birtcher, C.R. ; Panaretos, A.H.</creatorcontrib><description>With recent technological advancements, antenna elements have become smaller whereas the platforms they operate on, e.g., helicopter airframes, become electrically larger. These problems yield large computational domains and require significant computational resources. Traditional finite methods (FDTD and FEM) are second-order accurate thereby restricting the size of the domains that can be handled efficiently. We propose an approach which combines a subgridding technique with a higher-order scheme. FDTD subgridding techniques divide the simulation space into two separate grids; a fine one and a coarse one. The standard FDTD(2,2) is used to handle any of the fine features of the structure, whereas on the coarse grid FDTD(2,4), which is second-order accurate in time and fourth-order accurate in space, is used. Thus existing successfully-applied techniques in FDTD(2,2) are available for use on the fine grid. On the coarse mesh, away from phenomena associated with the complex structure, FDTD(2,4) is used mainly to simulate wave propagation in homogeneous media. With this approach, high accuracy is obtained both around fine geometric features, such as thin wires, thin slots, etc., as well as in the wave propagation.</description><identifier>ISBN: 0780373308</identifier><identifier>ISBN: 9780780373303</identifier><identifier>DOI: 10.1109/APS.2002.1016741</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boundary conditions ; Clocks ; Computational modeling ; Electronic equipment ; Finite difference methods ; Frequency ; Helicopters ; Mathematics ; Time domain analysis ; Wires</subject><ispartof>IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), 2002, Vol.2, p.694-697 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1016741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1016741$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Georgakopoulos, S.V.</creatorcontrib><creatorcontrib>Renaut, R.A.</creatorcontrib><creatorcontrib>Balanis, C.A.</creatorcontrib><creatorcontrib>Birtcher, C.R.</creatorcontrib><creatorcontrib>Panaretos, A.H.</creatorcontrib><title>A hybrid method of FDTD(2,4) and subgrid FDTD(2,2) for modeling of coupling</title><title>IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313)</title><addtitle>APS</addtitle><description>With recent technological advancements, antenna elements have become smaller whereas the platforms they operate on, e.g., helicopter airframes, become electrically larger. These problems yield large computational domains and require significant computational resources. Traditional finite methods (FDTD and FEM) are second-order accurate thereby restricting the size of the domains that can be handled efficiently. We propose an approach which combines a subgridding technique with a higher-order scheme. FDTD subgridding techniques divide the simulation space into two separate grids; a fine one and a coarse one. The standard FDTD(2,2) is used to handle any of the fine features of the structure, whereas on the coarse grid FDTD(2,4), which is second-order accurate in time and fourth-order accurate in space, is used. Thus existing successfully-applied techniques in FDTD(2,2) are available for use on the fine grid. On the coarse mesh, away from phenomena associated with the complex structure, FDTD(2,4) is used mainly to simulate wave propagation in homogeneous media. With this approach, high accuracy is obtained both around fine geometric features, such as thin wires, thin slots, etc., as well as in the wave propagation.</description><subject>Boundary conditions</subject><subject>Clocks</subject><subject>Computational modeling</subject><subject>Electronic equipment</subject><subject>Finite difference methods</subject><subject>Frequency</subject><subject>Helicopters</subject><subject>Mathematics</subject><subject>Time domain analysis</subject><subject>Wires</subject><isbn>0780373308</isbn><isbn>9780780373303</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjYJAwNNAzNDSw1HcMCNYzMjAw0jM0MDQzNzFkZuAyMLcwMDY3Njaw4GDgLS7OMgACUwMzSyNLTgZvR4WMyqSizBSF3NSSjPwUhfw0BTeXEBcNIx0TTYXEvBSF4tKkdJA8VNRIUyEtv0ghNz8lNSczLx2kPjm_tADE5mFgTUvMKU7lhdLcDNJuriHOHrqZqamp8QVFmbmJRZXxUHcZ45cFAI6NONs</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Georgakopoulos, S.V.</creator><creator>Renaut, R.A.</creator><creator>Balanis, C.A.</creator><creator>Birtcher, C.R.</creator><creator>Panaretos, A.H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>A hybrid method of FDTD(2,4) and subgrid FDTD(2,2) for modeling of coupling</title><author>Georgakopoulos, S.V. ; Renaut, R.A. ; Balanis, C.A. ; Birtcher, C.R. ; Panaretos, A.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_10167413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Boundary conditions</topic><topic>Clocks</topic><topic>Computational modeling</topic><topic>Electronic equipment</topic><topic>Finite difference methods</topic><topic>Frequency</topic><topic>Helicopters</topic><topic>Mathematics</topic><topic>Time domain analysis</topic><topic>Wires</topic><toplevel>online_resources</toplevel><creatorcontrib>Georgakopoulos, S.V.</creatorcontrib><creatorcontrib>Renaut, R.A.</creatorcontrib><creatorcontrib>Balanis, C.A.</creatorcontrib><creatorcontrib>Birtcher, C.R.</creatorcontrib><creatorcontrib>Panaretos, A.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgakopoulos, S.V.</au><au>Renaut, R.A.</au><au>Balanis, C.A.</au><au>Birtcher, C.R.</au><au>Panaretos, A.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid method of FDTD(2,4) and subgrid FDTD(2,2) for modeling of coupling</atitle><btitle>IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313)</btitle><stitle>APS</stitle><date>2002</date><risdate>2002</risdate><volume>2</volume><spage>694</spage><epage>697 vol.2</epage><pages>694-697 vol.2</pages><isbn>0780373308</isbn><isbn>9780780373303</isbn><abstract>With recent technological advancements, antenna elements have become smaller whereas the platforms they operate on, e.g., helicopter airframes, become electrically larger. These problems yield large computational domains and require significant computational resources. Traditional finite methods (FDTD and FEM) are second-order accurate thereby restricting the size of the domains that can be handled efficiently. We propose an approach which combines a subgridding technique with a higher-order scheme. FDTD subgridding techniques divide the simulation space into two separate grids; a fine one and a coarse one. The standard FDTD(2,2) is used to handle any of the fine features of the structure, whereas on the coarse grid FDTD(2,4), which is second-order accurate in time and fourth-order accurate in space, is used. Thus existing successfully-applied techniques in FDTD(2,2) are available for use on the fine grid. On the coarse mesh, away from phenomena associated with the complex structure, FDTD(2,4) is used mainly to simulate wave propagation in homogeneous media. With this approach, high accuracy is obtained both around fine geometric features, such as thin wires, thin slots, etc., as well as in the wave propagation.</abstract><pub>IEEE</pub><doi>10.1109/APS.2002.1016741</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780373308
ispartof IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), 2002, Vol.2, p.694-697 vol.2
issn
language eng
recordid cdi_ieee_primary_1016741
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boundary conditions
Clocks
Computational modeling
Electronic equipment
Finite difference methods
Frequency
Helicopters
Mathematics
Time domain analysis
Wires
title A hybrid method of FDTD(2,4) and subgrid FDTD(2,2) for modeling of coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20method%20of%20FDTD(2,4)%20and%20subgrid%20FDTD(2,2)%20for%20modeling%20of%20coupling&rft.btitle=IEEE%20Antennas%20and%20Propagation%20Society%20International%20Symposium%20(IEEE%20Cat.%20No.02CH37313)&rft.au=Georgakopoulos,%20S.V.&rft.date=2002&rft.volume=2&rft.spage=694&rft.epage=697%20vol.2&rft.pages=694-697%20vol.2&rft.isbn=0780373308&rft.isbn_list=9780780373303&rft_id=info:doi/10.1109/APS.2002.1016741&rft_dat=%3Cieee_6IE%3E1016741%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1016741&rfr_iscdi=true