Knee Flexion-Assisted Method for Human-Exoskeleton System
The knee has gradually become an important research target for the lower extremity exoskeleton. However, the issue that whether the flexion-assisted profile based on the contractile element (CE) is effective throughout the gait is still a research gap. In this study, we first analyze the effective f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2023-01, Vol.31, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 31 |
creator | Wang, Zhipeng Yang, Chifu Zhang, Shengping Zhang, Shihao Yi, Chunzhi Ding, Zhen Wei, Baichun Jiang, Feng |
description | The knee has gradually become an important research target for the lower extremity exoskeleton. However, the issue that whether the flexion-assisted profile based on the contractile element (CE) is effective throughout the gait is still a research gap. In this study, we first analyze the effective flexion-assisted method through the passive element's (PE) energy storage and release mechanism. Specifically, ensuring assisting within an entire joint power period and the human's active movement is a prerequisite for the CE-based flexion-assisted method. Second, we design the enhanced adaptive oscillator (EAO) to ensure the human's active movement and the integrity of the assistance profile. Third, a fundamental frequency estimation based on discrete Fourier transform (DFT) is proposed to shorten the convergence time of EAO significantly. The finite state machine (FSM) is designed to improve the stability and practicality of EAO. Finally, we demonstrate the effectiveness of the prerequisite condition for the CE-based flexion-assisted method by using electromyography (EMG) and metabolic indicators in experiments. In particular, for the knee joint, CE-based flexion assistance should be within an entire joint power period rather than just in the negative power phase. Ensuring the human's active movement will also significantly reduce the activation of antagonistic muscles. This study will aid in designing assistive methods from the perspective of natural human actuation and apply the EAO to the human-exoskeleton system. |
doi_str_mv | 10.1109/TNSRE.2023.3287867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10158382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10158382</ieee_id><doaj_id>oai_doaj_org_article_3b5b240749e149b193c9d48be84e949e</doaj_id><sourcerecordid>2830413405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-49004be0c1f8acb4fd652f32adc308171cec8e9cf5d2576f72a200135f26a4673</originalsourceid><addsrcrecordid>eNpdkVFrFDEQx4NYbK1-ARFZ8MWXPZNMskkeS7naYlvB1ueQzU50z91NTXah_fbN9c4iPs0w_ObPDD9C3jG6Yoyaz7fXN9_XK045rIBrpRv1ghwxKXVNOaMvtz2IWgCnh-R1zhtKmWqkekUOQQEYKuCImK8TYnU24H0fp_ok5z7P2FVXOP-KXRViqs6X0U31-j7m3zjgHKfq5qEw4xtyENyQ8e2-HpMfZ-vb0_P68tuXi9OTy9qLhs-1MJSKFqlnQTvfitA1kgfgrvNANVPMo9dofJAdl6oJijteDgUZeONEo-CYXOxyu-g29i71o0sPNrrePg1i-mldmns_oIVWtlxQJQwyYVpmwJtO6Ba1QFOGJevTLusuxT8L5tmOffY4DG7CuGTLNdfQcKVZQT_-h27ikqbyaaGACgaCykLxHeVTzDlheD6QUbuVZJ8k2a0ku5dUlj7so5d2xO555a-VArzfAT0i_pPIpAbN4RHZ4ZNG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830413405</pqid></control><display><type>article</type><title>Knee Flexion-Assisted Method for Human-Exoskeleton System</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Zhipeng ; Yang, Chifu ; Zhang, Shengping ; Zhang, Shihao ; Yi, Chunzhi ; Ding, Zhen ; Wei, Baichun ; Jiang, Feng</creator><creatorcontrib>Wang, Zhipeng ; Yang, Chifu ; Zhang, Shengping ; Zhang, Shihao ; Yi, Chunzhi ; Ding, Zhen ; Wei, Baichun ; Jiang, Feng</creatorcontrib><description>The knee has gradually become an important research target for the lower extremity exoskeleton. However, the issue that whether the flexion-assisted profile based on the contractile element (CE) is effective throughout the gait is still a research gap. In this study, we first analyze the effective flexion-assisted method through the passive element's (PE) energy storage and release mechanism. Specifically, ensuring assisting within an entire joint power period and the human's active movement is a prerequisite for the CE-based flexion-assisted method. Second, we design the enhanced adaptive oscillator (EAO) to ensure the human's active movement and the integrity of the assistance profile. Third, a fundamental frequency estimation based on discrete Fourier transform (DFT) is proposed to shorten the convergence time of EAO significantly. The finite state machine (FSM) is designed to improve the stability and practicality of EAO. Finally, we demonstrate the effectiveness of the prerequisite condition for the CE-based flexion-assisted method by using electromyography (EMG) and metabolic indicators in experiments. In particular, for the knee joint, CE-based flexion assistance should be within an entire joint power period rather than just in the negative power phase. Ensuring the human's active movement will also significantly reduce the activation of antagonistic muscles. This study will aid in designing assistive methods from the perspective of natural human actuation and apply the EAO to the human-exoskeleton system.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2023.3287867</identifier><identifier>PMID: 37339043</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuation ; Contractility ; Electromyography ; Energy storage ; energy storage and release mechanism ; enhanced adaptive oscillator ; Exoskeleton ; Exoskeletons ; Finite state machines ; Force ; Fourier transforms ; Gait ; Human motion ; human-exoskeleton system ; Joints (anatomy) ; Knee ; Knee flexion-assisted method ; Muscles ; Optical fiber cables ; Resonant frequencies</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2023-01, Vol.31, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-49004be0c1f8acb4fd652f32adc308171cec8e9cf5d2576f72a200135f26a4673</citedby><cites>FETCH-LOGICAL-c462t-49004be0c1f8acb4fd652f32adc308171cec8e9cf5d2576f72a200135f26a4673</cites><orcidid>0000-0002-2407-3410 ; 0000-0002-8316-3213 ; 0000-0002-3271-9437 ; 0000-0002-6549-0958 ; 0000-0002-4180-1109 ; 0000-0001-8342-1211 ; 0000-0001-5200-3420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37339043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Yang, Chifu</creatorcontrib><creatorcontrib>Zhang, Shengping</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Yi, Chunzhi</creatorcontrib><creatorcontrib>Ding, Zhen</creatorcontrib><creatorcontrib>Wei, Baichun</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><title>Knee Flexion-Assisted Method for Human-Exoskeleton System</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>The knee has gradually become an important research target for the lower extremity exoskeleton. However, the issue that whether the flexion-assisted profile based on the contractile element (CE) is effective throughout the gait is still a research gap. In this study, we first analyze the effective flexion-assisted method through the passive element's (PE) energy storage and release mechanism. Specifically, ensuring assisting within an entire joint power period and the human's active movement is a prerequisite for the CE-based flexion-assisted method. Second, we design the enhanced adaptive oscillator (EAO) to ensure the human's active movement and the integrity of the assistance profile. Third, a fundamental frequency estimation based on discrete Fourier transform (DFT) is proposed to shorten the convergence time of EAO significantly. The finite state machine (FSM) is designed to improve the stability and practicality of EAO. Finally, we demonstrate the effectiveness of the prerequisite condition for the CE-based flexion-assisted method by using electromyography (EMG) and metabolic indicators in experiments. In particular, for the knee joint, CE-based flexion assistance should be within an entire joint power period rather than just in the negative power phase. Ensuring the human's active movement will also significantly reduce the activation of antagonistic muscles. This study will aid in designing assistive methods from the perspective of natural human actuation and apply the EAO to the human-exoskeleton system.</description><subject>Actuation</subject><subject>Contractility</subject><subject>Electromyography</subject><subject>Energy storage</subject><subject>energy storage and release mechanism</subject><subject>enhanced adaptive oscillator</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Finite state machines</subject><subject>Force</subject><subject>Fourier transforms</subject><subject>Gait</subject><subject>Human motion</subject><subject>human-exoskeleton system</subject><subject>Joints (anatomy)</subject><subject>Knee</subject><subject>Knee flexion-assisted method</subject><subject>Muscles</subject><subject>Optical fiber cables</subject><subject>Resonant frequencies</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkVFrFDEQx4NYbK1-ARFZ8MWXPZNMskkeS7naYlvB1ueQzU50z91NTXah_fbN9c4iPs0w_ObPDD9C3jG6Yoyaz7fXN9_XK045rIBrpRv1ghwxKXVNOaMvtz2IWgCnh-R1zhtKmWqkekUOQQEYKuCImK8TYnU24H0fp_ok5z7P2FVXOP-KXRViqs6X0U31-j7m3zjgHKfq5qEw4xtyENyQ8e2-HpMfZ-vb0_P68tuXi9OTy9qLhs-1MJSKFqlnQTvfitA1kgfgrvNANVPMo9dofJAdl6oJijteDgUZeONEo-CYXOxyu-g29i71o0sPNrrePg1i-mldmns_oIVWtlxQJQwyYVpmwJtO6Ba1QFOGJevTLusuxT8L5tmOffY4DG7CuGTLNdfQcKVZQT_-h27ikqbyaaGACgaCykLxHeVTzDlheD6QUbuVZJ8k2a0ku5dUlj7so5d2xO555a-VArzfAT0i_pPIpAbN4RHZ4ZNG</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Zhipeng</creator><creator>Yang, Chifu</creator><creator>Zhang, Shengping</creator><creator>Zhang, Shihao</creator><creator>Yi, Chunzhi</creator><creator>Ding, Zhen</creator><creator>Wei, Baichun</creator><creator>Jiang, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2407-3410</orcidid><orcidid>https://orcid.org/0000-0002-8316-3213</orcidid><orcidid>https://orcid.org/0000-0002-3271-9437</orcidid><orcidid>https://orcid.org/0000-0002-6549-0958</orcidid><orcidid>https://orcid.org/0000-0002-4180-1109</orcidid><orcidid>https://orcid.org/0000-0001-8342-1211</orcidid><orcidid>https://orcid.org/0000-0001-5200-3420</orcidid></search><sort><creationdate>20230101</creationdate><title>Knee Flexion-Assisted Method for Human-Exoskeleton System</title><author>Wang, Zhipeng ; Yang, Chifu ; Zhang, Shengping ; Zhang, Shihao ; Yi, Chunzhi ; Ding, Zhen ; Wei, Baichun ; Jiang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-49004be0c1f8acb4fd652f32adc308171cec8e9cf5d2576f72a200135f26a4673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Contractility</topic><topic>Electromyography</topic><topic>Energy storage</topic><topic>energy storage and release mechanism</topic><topic>enhanced adaptive oscillator</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Finite state machines</topic><topic>Force</topic><topic>Fourier transforms</topic><topic>Gait</topic><topic>Human motion</topic><topic>human-exoskeleton system</topic><topic>Joints (anatomy)</topic><topic>Knee</topic><topic>Knee flexion-assisted method</topic><topic>Muscles</topic><topic>Optical fiber cables</topic><topic>Resonant frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhipeng</creatorcontrib><creatorcontrib>Yang, Chifu</creatorcontrib><creatorcontrib>Zhang, Shengping</creatorcontrib><creatorcontrib>Zhang, Shihao</creatorcontrib><creatorcontrib>Yi, Chunzhi</creatorcontrib><creatorcontrib>Ding, Zhen</creatorcontrib><creatorcontrib>Wei, Baichun</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhipeng</au><au>Yang, Chifu</au><au>Zhang, Shengping</au><au>Zhang, Shihao</au><au>Yi, Chunzhi</au><au>Ding, Zhen</au><au>Wei, Baichun</au><au>Jiang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knee Flexion-Assisted Method for Human-Exoskeleton System</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>31</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>The knee has gradually become an important research target for the lower extremity exoskeleton. However, the issue that whether the flexion-assisted profile based on the contractile element (CE) is effective throughout the gait is still a research gap. In this study, we first analyze the effective flexion-assisted method through the passive element's (PE) energy storage and release mechanism. Specifically, ensuring assisting within an entire joint power period and the human's active movement is a prerequisite for the CE-based flexion-assisted method. Second, we design the enhanced adaptive oscillator (EAO) to ensure the human's active movement and the integrity of the assistance profile. Third, a fundamental frequency estimation based on discrete Fourier transform (DFT) is proposed to shorten the convergence time of EAO significantly. The finite state machine (FSM) is designed to improve the stability and practicality of EAO. Finally, we demonstrate the effectiveness of the prerequisite condition for the CE-based flexion-assisted method by using electromyography (EMG) and metabolic indicators in experiments. In particular, for the knee joint, CE-based flexion assistance should be within an entire joint power period rather than just in the negative power phase. Ensuring the human's active movement will also significantly reduce the activation of antagonistic muscles. This study will aid in designing assistive methods from the perspective of natural human actuation and apply the EAO to the human-exoskeleton system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37339043</pmid><doi>10.1109/TNSRE.2023.3287867</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2407-3410</orcidid><orcidid>https://orcid.org/0000-0002-8316-3213</orcidid><orcidid>https://orcid.org/0000-0002-3271-9437</orcidid><orcidid>https://orcid.org/0000-0002-6549-0958</orcidid><orcidid>https://orcid.org/0000-0002-4180-1109</orcidid><orcidid>https://orcid.org/0000-0001-8342-1211</orcidid><orcidid>https://orcid.org/0000-0001-5200-3420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2023-01, Vol.31, p.1-1 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_ieee_primary_10158382 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Actuation Contractility Electromyography Energy storage energy storage and release mechanism enhanced adaptive oscillator Exoskeleton Exoskeletons Finite state machines Force Fourier transforms Gait Human motion human-exoskeleton system Joints (anatomy) Knee Knee flexion-assisted method Muscles Optical fiber cables Resonant frequencies |
title | Knee Flexion-Assisted Method for Human-Exoskeleton System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knee%20Flexion-Assisted%20Method%20for%20Human-Exoskeleton%20System&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Wang,%20Zhipeng&rft.date=2023-01-01&rft.volume=31&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2023.3287867&rft_dat=%3Cproquest_ieee_%3E2830413405%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830413405&rft_id=info:pmid/37339043&rft_ieee_id=10158382&rft_doaj_id=oai_doaj_org_article_3b5b240749e149b193c9d48be84e949e&rfr_iscdi=true |