LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels
Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2024-01, Vol.34 (1), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 34 |
creator | Okamura, Daiki Harakawa, Ryosuke Iwahashi, Masahiro |
description | Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods. |
doi_str_mv | 10.1109/TCSVT.2023.3286546 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10155424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155424</ieee_id><sourcerecordid>2911475729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-4000248e2ea996ef53e516d52d2bf5905a9bd7087ee1bd387c065b8bee7c66c83</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxTdGExH9AsZDE8-Lbbfddr3pBv8kgEbBa9PdndUiUGwXCXx6C8vB07zMzJs3-UXRJcE9QnB2M87fP8Y9imnSS6hMOUuPog7hXMaUYn4cNOYklpTw0-jM-ynGhEkmOtF2kI-G_Vs00AXMUG6dg7IxdoEm3iw-0QiatXXf6NVBZdrBvfZQoSCGMLfObPW-26_rYPSotg7lznofD22lZ-gNGmfgN6i1ab7QyBq_acP8eXRS65mHi0PtRpOH_jh_igcvj8_53SAuKRNNzDDGlEmgoLMshZonwElacVrRouYZ5jorKoGlACBFlUhR4pQXsgAQZZqWMulG1-3dpbM_K_CNmtqVW4RIRTNCmOCCZmGLtlvl7nsHtVo6M9duowhWO8Zqz1jtGKsD42C6ak0GAP4ZAnlGWfIHLnp48g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911475729</pqid></control><display><type>article</type><title>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</title><source>IEEE Electronic Library (IEL)</source><creator>Okamura, Daiki ; Harakawa, Ryosuke ; Iwahashi, Masahiro</creator><creatorcontrib>Okamura, Daiki ; Harakawa, Ryosuke ; Iwahashi, Masahiro</creatorcontrib><description>Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3286546</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cross-modal retrieval ; deep learning ; Electronic mail ; Encyclopedias ; Internet ; label correction ; Labels ; neural network ; Noise measurement ; noisy label ; Predictions ; Representation learning ; Retrieval ; Training</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-01, Vol.34 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-4000248e2ea996ef53e516d52d2bf5905a9bd7087ee1bd387c065b8bee7c66c83</cites><orcidid>0000-0001-6712-0857 ; 0000-0002-7166-4440 ; 0000-0002-7566-1247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10155424$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Okamura, Daiki</creatorcontrib><creatorcontrib>Harakawa, Ryosuke</creatorcontrib><creatorcontrib>Iwahashi, Masahiro</creatorcontrib><title>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods.</description><subject>Cross-modal retrieval</subject><subject>deep learning</subject><subject>Electronic mail</subject><subject>Encyclopedias</subject><subject>Internet</subject><subject>label correction</subject><subject>Labels</subject><subject>neural network</subject><subject>Noise measurement</subject><subject>noisy label</subject><subject>Predictions</subject><subject>Representation learning</subject><subject>Retrieval</subject><subject>Training</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxTdGExH9AsZDE8-Lbbfddr3pBv8kgEbBa9PdndUiUGwXCXx6C8vB07zMzJs3-UXRJcE9QnB2M87fP8Y9imnSS6hMOUuPog7hXMaUYn4cNOYklpTw0-jM-ynGhEkmOtF2kI-G_Vs00AXMUG6dg7IxdoEm3iw-0QiatXXf6NVBZdrBvfZQoSCGMLfObPW-26_rYPSotg7lznofD22lZ-gNGmfgN6i1ab7QyBq_acP8eXRS65mHi0PtRpOH_jh_igcvj8_53SAuKRNNzDDGlEmgoLMshZonwElacVrRouYZ5jorKoGlACBFlUhR4pQXsgAQZZqWMulG1-3dpbM_K_CNmtqVW4RIRTNCmOCCZmGLtlvl7nsHtVo6M9duowhWO8Zqz1jtGKsD42C6ak0GAP4ZAnlGWfIHLnp48g</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Okamura, Daiki</creator><creator>Harakawa, Ryosuke</creator><creator>Iwahashi, Masahiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6712-0857</orcidid><orcidid>https://orcid.org/0000-0002-7166-4440</orcidid><orcidid>https://orcid.org/0000-0002-7566-1247</orcidid></search><sort><creationdate>20240101</creationdate><title>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</title><author>Okamura, Daiki ; Harakawa, Ryosuke ; Iwahashi, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-4000248e2ea996ef53e516d52d2bf5905a9bd7087ee1bd387c065b8bee7c66c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cross-modal retrieval</topic><topic>deep learning</topic><topic>Electronic mail</topic><topic>Encyclopedias</topic><topic>Internet</topic><topic>label correction</topic><topic>Labels</topic><topic>neural network</topic><topic>Noise measurement</topic><topic>noisy label</topic><topic>Predictions</topic><topic>Representation learning</topic><topic>Retrieval</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamura, Daiki</creatorcontrib><creatorcontrib>Harakawa, Ryosuke</creatorcontrib><creatorcontrib>Iwahashi, Masahiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Okamura, Daiki</au><au>Harakawa, Ryosuke</au><au>Iwahashi, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3286546</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6712-0857</orcidid><orcidid>https://orcid.org/0000-0002-7166-4440</orcidid><orcidid>https://orcid.org/0000-0002-7566-1247</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2024-01, Vol.34 (1), p.1-1 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_10155424 |
source | IEEE Electronic Library (IEL) |
subjects | Cross-modal retrieval deep learning Electronic mail Encyclopedias Internet label correction Labels neural network Noise measurement noisy label Predictions Representation learning Retrieval Training |
title | LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LCNME:%20Label%20Correction%20Using%20Network%20Prediction%20Based%20on%20Memorization%20Effects%20for%20Cross-Modal%20Retrieval%20with%20Noisy%20Labels&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Okamura,%20Daiki&rft.date=2024-01-01&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3286546&rft_dat=%3Cproquest_RIE%3E2911475729%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911475729&rft_id=info:pmid/&rft_ieee_id=10155424&rfr_iscdi=true |