LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels

Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-01, Vol.34 (1), p.1-1
Hauptverfasser: Okamura, Daiki, Harakawa, Ryosuke, Iwahashi, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on circuits and systems for video technology
container_volume 34
creator Okamura, Daiki
Harakawa, Ryosuke
Iwahashi, Masahiro
description Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods.
doi_str_mv 10.1109/TCSVT.2023.3286546
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10155424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155424</ieee_id><sourcerecordid>2911475729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-4000248e2ea996ef53e516d52d2bf5905a9bd7087ee1bd387c065b8bee7c66c83</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxTdGExH9AsZDE8-Lbbfddr3pBv8kgEbBa9PdndUiUGwXCXx6C8vB07zMzJs3-UXRJcE9QnB2M87fP8Y9imnSS6hMOUuPog7hXMaUYn4cNOYklpTw0-jM-ynGhEkmOtF2kI-G_Vs00AXMUG6dg7IxdoEm3iw-0QiatXXf6NVBZdrBvfZQoSCGMLfObPW-26_rYPSotg7lznofD22lZ-gNGmfgN6i1ab7QyBq_acP8eXRS65mHi0PtRpOH_jh_igcvj8_53SAuKRNNzDDGlEmgoLMshZonwElacVrRouYZ5jorKoGlACBFlUhR4pQXsgAQZZqWMulG1-3dpbM_K_CNmtqVW4RIRTNCmOCCZmGLtlvl7nsHtVo6M9duowhWO8Zqz1jtGKsD42C6ak0GAP4ZAnlGWfIHLnp48g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911475729</pqid></control><display><type>article</type><title>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</title><source>IEEE Electronic Library (IEL)</source><creator>Okamura, Daiki ; Harakawa, Ryosuke ; Iwahashi, Masahiro</creator><creatorcontrib>Okamura, Daiki ; Harakawa, Ryosuke ; Iwahashi, Masahiro</creatorcontrib><description>Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3286546</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cross-modal retrieval ; deep learning ; Electronic mail ; Encyclopedias ; Internet ; label correction ; Labels ; neural network ; Noise measurement ; noisy label ; Predictions ; Representation learning ; Retrieval ; Training</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-01, Vol.34 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-4000248e2ea996ef53e516d52d2bf5905a9bd7087ee1bd387c065b8bee7c66c83</cites><orcidid>0000-0001-6712-0857 ; 0000-0002-7166-4440 ; 0000-0002-7566-1247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10155424$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Okamura, Daiki</creatorcontrib><creatorcontrib>Harakawa, Ryosuke</creatorcontrib><creatorcontrib>Iwahashi, Masahiro</creatorcontrib><title>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods.</description><subject>Cross-modal retrieval</subject><subject>deep learning</subject><subject>Electronic mail</subject><subject>Encyclopedias</subject><subject>Internet</subject><subject>label correction</subject><subject>Labels</subject><subject>neural network</subject><subject>Noise measurement</subject><subject>noisy label</subject><subject>Predictions</subject><subject>Representation learning</subject><subject>Retrieval</subject><subject>Training</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxTdGExH9AsZDE8-Lbbfddr3pBv8kgEbBa9PdndUiUGwXCXx6C8vB07zMzJs3-UXRJcE9QnB2M87fP8Y9imnSS6hMOUuPog7hXMaUYn4cNOYklpTw0-jM-ynGhEkmOtF2kI-G_Vs00AXMUG6dg7IxdoEm3iw-0QiatXXf6NVBZdrBvfZQoSCGMLfObPW-26_rYPSotg7lznofD22lZ-gNGmfgN6i1ab7QyBq_acP8eXRS65mHi0PtRpOH_jh_igcvj8_53SAuKRNNzDDGlEmgoLMshZonwElacVrRouYZ5jorKoGlACBFlUhR4pQXsgAQZZqWMulG1-3dpbM_K_CNmtqVW4RIRTNCmOCCZmGLtlvl7nsHtVo6M9duowhWO8Zqz1jtGKsD42C6ak0GAP4ZAnlGWfIHLnp48g</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Okamura, Daiki</creator><creator>Harakawa, Ryosuke</creator><creator>Iwahashi, Masahiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6712-0857</orcidid><orcidid>https://orcid.org/0000-0002-7166-4440</orcidid><orcidid>https://orcid.org/0000-0002-7566-1247</orcidid></search><sort><creationdate>20240101</creationdate><title>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</title><author>Okamura, Daiki ; Harakawa, Ryosuke ; Iwahashi, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-4000248e2ea996ef53e516d52d2bf5905a9bd7087ee1bd387c065b8bee7c66c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cross-modal retrieval</topic><topic>deep learning</topic><topic>Electronic mail</topic><topic>Encyclopedias</topic><topic>Internet</topic><topic>label correction</topic><topic>Labels</topic><topic>neural network</topic><topic>Noise measurement</topic><topic>noisy label</topic><topic>Predictions</topic><topic>Representation learning</topic><topic>Retrieval</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamura, Daiki</creatorcontrib><creatorcontrib>Harakawa, Ryosuke</creatorcontrib><creatorcontrib>Iwahashi, Masahiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Okamura, Daiki</au><au>Harakawa, Ryosuke</au><au>Iwahashi, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Cross-modal retrieval with noisy labels has attracted much attention. This state-of-the-art method trains a network to increase weights for clean labels in the loss. However, we have found that the network is eventually overfitted to the remaining noisy labels as training progresses. Motivated by this finding, this paper proposes a method called Label Correction using Network prediction based on Memorization Effects (LCNME) to correct noisy labels. This is unlike the state-of-the-art method, which leaves noisy labels on training. We assume that noisy labels are irrelevant to data features and realize label correction using predicted labels (obtained by network prediction) instead of given labels. However, because of memorization effects (the property whereby the network first learns clean labeled data then learns noisy labeled data), predicted labels are contaminated by noisy labels from the certain epoch called the change epoch. Although the change epoch is unknown in advance, we find that it can be identified by observing the loss of the noisy validation set. Using the change epoch, predicted labels can be generated without being affected by noisy labels. Extensive experiments show that LCNME accurately corrects noisy labels and achieves better cross-modal retrieval than existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3286546</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6712-0857</orcidid><orcidid>https://orcid.org/0000-0002-7166-4440</orcidid><orcidid>https://orcid.org/0000-0002-7566-1247</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-01, Vol.34 (1), p.1-1
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_10155424
source IEEE Electronic Library (IEL)
subjects Cross-modal retrieval
deep learning
Electronic mail
Encyclopedias
Internet
label correction
Labels
neural network
Noise measurement
noisy label
Predictions
Representation learning
Retrieval
Training
title LCNME: Label Correction Using Network Prediction Based on Memorization Effects for Cross-Modal Retrieval with Noisy Labels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LCNME:%20Label%20Correction%20Using%20Network%20Prediction%20Based%20on%20Memorization%20Effects%20for%20Cross-Modal%20Retrieval%20with%20Noisy%20Labels&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Okamura,%20Daiki&rft.date=2024-01-01&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3286546&rft_dat=%3Cproquest_RIE%3E2911475729%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911475729&rft_id=info:pmid/&rft_ieee_id=10155424&rfr_iscdi=true